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Zusammenfassung

Diese Bachelorarbeit behandelt das Thema “Generalisierte lineare Modelle mit parame-
trischen Linkfunktionen in R”. Nach einer kurzen Einleitung widmen wir uns den mathe-
matischen Grundlagen der linearen Regression, um die Theorie der generalisierten linearen
Modelle herzuleiten. Vieles der zugrundliegenden Theorie ldsst sich auf die generalisierten
Modelle verallgemeinern. Wihrend die linearen Modelle bei der Verteilung fiir den Fehler
auf die Normalverteilung beschriankt sind, kann in generalisierten linearen Modellen dafiir
jede Verteilung der Exponentialfamilie verwendet werden. Im dritten Kapitel wird neben
der Beschreibung des Modells ein Uberblick iiber die Schitzung mittels der Maximum-
Likelihood-Methode gegeben. Hierfiir wird der sogenannte Fisher scoring Algorithmus
hergeleitet, welcher sich in den TWLS-Algorithmus (“iterative weighted least squares”) um-
schreiben lasst. Dieser fuftt auf der Theorie der Schiatzmethode der kleinsten Quadrate,
welche wir im Kapitel iiber lineare Modelle erkldren. Ein zentraler Punkt dieser Arbeit
ist die Definition eigener parametrischer Linkfunktionen und deren Implementierung in
R. Daher wird in Unterkapitel darauf eingegangen, wie die Standard-Linkfunktionen
in R implementiert sind. Auferdem wird ein Uberblick gegeben, welche Wahl fiir die
Linkfunktion fiir die jeweilige Verteilungsfamilie zuléssig ist. Zuletzt wird das theoretis-
che Fundament gelegt um anhand einer Kennzahl, der Devianz, einzuschétzen, wie gut
das Modell zu den gegebenen Daten passt.

Nach dem theoretischen Teil werden im vierten Kapitel die Daten vorgestellt, welche in
dieser Arbeit immerzu Verwendung in den Beispielen finden. Im fiinften Kapitel wird die
R interne glm-Funktion auf die eben genannten Daten angewendet. Hauptaugenmerk gilt
der Devianz, welche eine Mafzahl fiir den sogenannten “goodness of fit” ist. Sie misst wie
stark die Erwartungswerte des Modells von den gegebenen Daten abweichen. Je kleiner
die Abweichung ist, desto besser passt das Modell zu den Daten. Daher gilt es dasjenige
Modell auszuwéhlen, welches eine minimale Devianz liefert. In den Beispielen der gew6hn-
lichen glm-Funktion sind die resultierenden Devianzen zum Teil nicht zufriedenstellend.
Im sechsten Kapitel fiihren wir deshalb Transformationen fiir die Linkfunktionen ein. Dies
ist das Kernthema der Arbeit und wurde bereits von Czado| (2007)) thematisiert. Mithilfe
der parametrischen Linkfunktionen ldsst sich in allen Fallen ein Modell erzielen, welches
besser auf die Daten passt, da die resultierende Devianz geringer ist.

Jedoch kennt man den optimalen Parameter nicht, der fiir die Minimierung der De-
vianz in der parametrischen Linkfunktion verwendet werden sollte. In Unterkapitel
wird die glmProfile-Funktion vorgestellt, die dieses Problem l6sen soll. Nach Eingabe
eines Parameter-Vektors wird ein Plot der Devianz gegen den Parameter und die entsprech-
enden Werte ausgegeben. Aufserdem wird der Parameter angegeben, der die Devianz mini-
miert mit entsprechender minimaler Devianz. Die glmProfile-Funktion wird im siebten
Kapitel auf die in dieser Arbeit verwendeten Datensétze angewandt. Im achten Kapitel
vergleichen wir die Ergebnisse der glm-Funktion fiir die Standard-Linkfunktionen mit den
Ergebnissen der glm-Funktion fiir die modifizierten Linkfunktionen fiir die optimalen Pa-
rameter. Abschlieflend geben wir eine kurze Zusammenfassung und einen Ausblick auf
interessante Weiterfithrungen der vorgestellten Themen und Funktionen.
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1 Introduction

In today’s world, further analysis of the available data is often necessary. By saying the
word “data” we refer to a set of n observations or measurements made from different
groups of objects or subjects (compare to Dobson (1999)(p. 1)). Regression analysis is
commonly used to describe the relationship among certain variables. Thus, we focus on
one dependent variable and try to describe it through one or more independent variables.

Covariates
independent variables
non-random measurement ¢ explanatory variables
predictor variables
regressor variables

U Examine the relationship between the observations U

Response
random measurement dependent variable
outcome

Table 1.1: Basic notation of the thesis.

Hence, we find ourselves in a probabilistic model and model our response through a
linear regression model using the following equation:

Yi = Po + Bz + -+ Brwig + &

Here y; is the random response and x;q, . . . , x; is the set of known covariates. By, b1, - .., Bk
are the unknown regression parameters and ¢; is the random error term. The underlying
assumption is that the relationship between the response and the covariates is linear.
Myers et al.| (2002)(p. 1ff.) states more precisely that the mean of the response is a linear
function of the unknown parameters. We will describe the linear regression model in detail
in Chapter The description in Section provides the notional basis for the entire
thesis. In addition we will focus on the least squares estimation and on the mazimum
likelihood estimation in the framework of the linear models (see Section [2.2). However, as
Section reveals, the linear models may be inappropriate in some situations.

For that reason we introduce the generalized linear models (GLMs) in Chapter 3| The
advantage of GLMs compared to the linear regression models is, that one can examine
a more applicable class of error distributions. The derived statistical models can handle
distributions coming from the exponential famaily, for example:

e normal distribution e Poisson distribution

e binomial distribution e gamma distribution



2 1 INTRODUCTION

After the description of the generalized linear models in Section we will focus
on the estimation of the regression parameters. Section will address the mazimum
likelihood estimation. We will derive the Fisher scoring algorithm and rewrite it into the
iterative weighted least squares algorithm. Both algorithms can be used to estimate the
vector of unknown regression parameters 3 € RP. In Section we will give an overview
of important families. In particular, the implementation of the common link functions in
R is of interest. Afterwards we will define the deviance as a measure for the goodness of
fit of a generalized linear model (see Section [3.4). The third chapter will conclude with
an overview of the link functions in R and additional comments (see Section [3.5).

For every generalized linear model we have to define a relationship between the linear
predictor and the mean through the so-called link functions. The problem is that we have
to choose the link function before even getting started with the regression analysis. By this
time we often have insufficient information about an adequate choice of the link function.
Consequently, we have to face cases, in which the link function seems inappropriate. In
these cases we want to increase the goodness of fit by using parametric link families
performing a transformation on the tails (compare to (Czado| (1992) and Czado| (2007)).
In Chapter [6] we will introduce the parametric link families and we will exemplify how
GLMs in R can be fitted using user-defined link functions (see Section [6.2). We will
present the tail modifying functions and an extension to the glm function in R (called
glmProfile). Either a single tail (“left” or “right”) or both tails can be modified to increase
the goodness of fit. Therefore the parametric link functions can be seen as one- or two-
parametric extensions of the common link functions. The parameters of these user-defined
link functions can be derived by the glmProfile function.

We will accompany the theory by examples of the corresponding functions applied on
the data sets we will introduce in Chapter [ In the first part we will apply the ordinary
glm function with a common link function (see Section [3.3] and Chapter [5]) on the data
sets. In Section we will examine the data again using parametric link functions in
the ordinary glm function. The optimal parameters for the tail modifiying GLMs can be
derived by the glmProfile function, which we will define in Section In Chapter [7| we
want to present the output of the glmProfile function.

To clarify the improvement of the tail transformations we will present a short summary
of the main results of the examples in Chapter [§l The results show that the tail modified
GLMs will increase the goodness of fit compared to the ordinary generalized regression
models in all cases. To conclude the work we will give a brief outlook and a summary of
the thesis in Chapter[9] The calculations, which needed to be done throughout the work,
can be found in the appendix (see Chapter [A]).

Remark 1.1 (Usage of statistical software)

Throughout this thesis we will support our theory using examples implemented in the
software environment of R using the R version 3.1.0 (2014-04-10). R is mainly used for
statistical computing and graphics and runs on almost every operating system. In addition
the users can apply a tremendous variety of functions coming along with the common
packages. A lot of functions and routines used in special analyses can be included using
the corresponding packages. There is also the possibility to include R output in IXTEX-
documents. For my thesis I used the package knitr (see Xie| (2013))) which allows to write
dynamic documents with R.



R is very similar to the environment of the programming language S and it is a GNU
project (i.e. available as free software). A lot of code written in S runs under R as well.
Apart from some important differences we can regard R as a different version of S. For
further information about the R Project please visit: http://www.r-project.org/.

Remark 1.2 (Idea of parametric link functions in S)

In this thesis we want to modify the common link functions in R. In (Czado, (1992)) the
ordinary link families were extended by using an advantageous parametric class of link
transformations. This idea was elaborated in|Czado| (2007)), where parametric link families
were used to fit GLMs in S. All functions (i.e. the hpsi functions and the glmProfile
function), which we present in this thesis, were therefore implemented in the statistical
environment of S.

The main task of this thesis is to implement the parametric link families in the statisti-
cal programming environment of R. In most cases we could use the framework as presented
in |Czado (2007)), converting the code into a basis running in the R environment. However,
there were also parts, in which we had to come up with new ideas (especially the defi-
nition of the link functions is different). We also want to present the underlying theory
of generalized linear models in detail following the notation in |Czado et al.| (2013)). The
resulting R code and the R data frames will be presented in the corresponding chapters.
Moreover, all data sets and functions described throughout this thesis were put together
in the package ParLinkFam, which contains help files with descriptions and application
examples.


http://www.r-project.org/
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2 The linear models

As the classical regression models are of great importance in statistical data analysis, we
first consider the simple linear regression model. In Chapter [2| we follow (Czado et al.
(2013) (Sections 2.1 and 2.2) in presenting important results for the linear models. The
notional basis will be introduced in Section 2.1, where we will formulate the linear model.
Section [2.2] will focus on the estimation of the unknown parameters through least squares
estimation and through maximum likelihood estimation. However, as Section shows,
the linear models cannot be used in all the desired applications. Hence, we will use the
underlying theory to derive the generalized linear models (as presented in Chapter [3)).

2.1 Model description

The content presented in Section [2.1| can be found in (Czado and Schmidt| (2011))(Section
7.1) and Bates and Watts| (2007))(Section 1.1). The linear regression model describes the
random response Y in dependency of the k known predictors (denoted by: z1, ..., xy).
For each observation (i.e. ¥i € {1,--- ,n}) we assume that the observation y; made from
the response Y; is a linear function of the values of the covariates for this observation,
denoted by x;1, ..., x;. Of course this will not fit perfectly in all cases. Thus, for each
observation we will have to add a random error term (denoted by ¢;). In addition the
linear model contains the so-called intercept .

Definition 2.1 (The linear model and its assumptions)
(i) linearity:
for each observation we assume that the random response is related to the covariates
in a linear way:

Y = Bo + Brxa + Boxio + - - + Brir + & Vi € {1,...,’11} (2.1)
with a random error term satisfying: E[g;] =0 Vie {1,--- ,n}.

(ii) independence:
the random error terms €y, ...,&, are independent.

(iii) variance homogeneity:
they also have a constant variance and it holds:

Var [Y;] = Var [g;] = o?

(iv) normality:
lastly, the error terms ¢4, ..., &, follow a normal distribution.

Remark 2.2
e for one specific observation i € {1,...,n} we will summarize the covariates z;i, ...,
x; in the covariate vector ax;, also taking into account the influence of the intercept,

i.e. we get:
r; — (1, L1y eeey ZUZ'k)T € Rk+1 (22)



2.1 Model description 5)

e we are interested in estimating the regression parameters By, ..., k. All in all we
will thus estimate p := k + 1 unknown parameters from the n observations. The
vector of regression parameters will be denoted by:

B = (Bo,br,....B) €R? (2.3)

e Y, is a random variable and thus it can have an expectation or a variance. On the
other hand, we also have non-random quantities, for example the covariate vector x;.
However, sometimes random variables are also inconveniently denoted with small
letters (e.g. ¢;). Further commonly used abbreviations and notation are presented

in Section [A.5l

e due to Definition we can conclude for the error terms that ¢; ~ N(0,0%) Vi €
{1,---,n} since they follow a normal distribution with mean p. = 0 and a constant
variance o2. Thus, €1, ...,¢&, are i.i.d. random variables.

e since fy,..., 0 € R and x; € R” we see that only ¢; is random in Equation (2.1).
Consequently, the distribution of Y; must be the same as for ;. Thus, Y; has to be
normally distributed. For the mean p; and the variance o we get:

pi = E[Y;] = By + rzin + Poin + -+ + By = x] B (2.4)
Var [Y;] = Var [g;] = o?
= Y; ~ N (5, 0%) Vie{l,...,n}

Distribution of the random vectors

Since €4, ...,&, are i.i.d. N(0,0?) distributed it is appropriate to think about the distri-
bution of the vector € := (g1,...,¢,)". Afterwards we can derive a distribution of the
following vector:

Y =Y,...,Y)" (2.5)
in order to transform the linear regression model of Definition into matrix-vector

notation. For this we define the design matriz X € R"*P,

Definition 2.3 (The design matrix)
For n observations and the n corresponding covariate vectors xy, ..., x, the design matrix
X € R™*? is given by:

.
1 11 TL12 ... 1k Ty
1 2o w2 Tk, E z,
¢ @) 2

X:=1. . = . € RW*P
T

1 21 xpe ... Tok x,

Definition 2.4 (Matrix-vector notation for linear models)
Using this definition we can rewrite the linear model in matrix-vector notation as follows:

Y =XB+¢ with & ~ N,(0,0°1,)

where N, (p, X) denotes the n-dimensional normal distribution with mean vector p and
variance-covariance matrix 3 (see also Subsection [2.2.2]).
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Remark 2.5
Assuming normality conditions we have (according to Definition [2.4)):

ElY] "<’ xa (2.6)
Var [Y] = o°l,
=Y ~ N,(XB,o°L,) (2.7)

2.2 Parameter estimation in linear models

We want to derive estimates for the unknown vector of regression parameters 3 € RP,
assuming that the conditions of Definition [2.1] hold. We will introduce two techniques
to derive the estimates ,8 (60, e ﬁk) € R? out of the n observations given by the
observations made from the response (i.e. yi,...,y,) and the observations made from the
corresponding covariate vector (i.e. «p,...,x,). Together these observations will form
the data (see Myers et al.| (2002)(p. 8)).
2.2.1 Least squares estimation
In this subsection we will follow the calculation in Myers et al.| (2002))(p. 7ff.). We want
to find values for 3 s.t. for every observation ¢ € {1,...,n} the fitted values

Ui = Bo + Brzin + - + Brvar

do not lie too far from the observations y; = Bo + Pizin + - - - + Brxir + ;. Therefore we
want to determine the values Sy, ..., Bk of o, ..., Br that minimize the sum of the squares
of the errors, which is given by:

Definition 2.6 (Sum of the squares of the errors)
The i-th error term (i € {1,...,n}) is given by:

see Eq. (2.4]
g =i — (Bo+ Brxa + -+ + Brir) g.yi_m:ﬁ

Consequently, the sum of the squares of the errors is defined as:

(,B‘y) ZQSeeEq Z —;BT/B
i=1
Again we can rewrite the quantities in vector notation:
y:=(y,...,y.) €R"
e=(e1,...,6n)" Def:'y - XpBeR"

Therefore, we can rewrite the sum of the squares of the errors as:

QB ly) =llelz=lly — XBI3 (2.8)
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To minimize Equation ([2.8)) we must at least satisfy the necessary condition of first order
(compare to Ulbrich and Ulbrich| (2012) (Chapter 5)):

0Q(B | y)
B

0
© 35 (ly — XB[3) =0

=0

&2 ((y—XB) (y— XB)) =0

o
0
s —|y'y- B'X'y vy XB+B'X'XB|[=0
813 ——
~(y7xB) R
@3 y'y—-2 y'X B+B'X'XB|=0
o3 L
=XTy)T

0
der (vy'y—2X"y) ' B+B'X'XB) =0
XTX isgmmetric —QXTy + 2XTX,6 —0
e X'XB=X"y (2.9)

Remark 2.7 (Least squares normal equation)
Equation ([2.9)) is called the least squares normal equation. If the design matrix X € R"*P
is invertible (i.e. has full rank [rank(X) = min{p,n} = p, assuming n > p|), then we

can rewrite the least squares normal equation by solving it for the estimate 3. L.e. the
minimum of Q(3 | y) is attained at:

B=(X"X)"X"y
We refer to the solution [A‘i using the term least squares solution or ordinary least squares
estimator for (3.

2.2.2 Maximum likelihood estimation

In the following we will derive the maximum likelihood estimator for 3 following the
general definitions given in (Czado and Schmidt| (2011 (Section 3.3). Recall that we derived
Equation (2.7) and accordingly we have (assuming normality conditions hold):

Y ~ N, (XB,0%1,)

In this case the likelihood function is given by the density of the multivariate normal
distribution in n dimensions. According to [Seber| (1977)(p. 22ff.) for Y ~ N, (u,X)
(where X € R™™™ is a positive definite matrix) the density is given by:

fry|lpX) = —l(y—u)Tzl(y—u)}

1
— X
(27) 3 V/det > p{ 2
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Now for the response vector Y in a linear model we have:

Y =%,

= VdetY = /(02)" = (07)

=¥y l= illn
0-2

B

=(y—p) 'S (y—p) =
p=XpB
= ly — ull3 =y — X85

o2

Hence, the likelihood function of (3, 0) given y equals:

1

1
L(B,o|y) = mexp {—T‘QH?J — Xﬂ”%}

The log likelihood is thus given by:

1 1
In(L =1 =) - - X8B3
(2B, | 9) =t (5t )~ grally — X3
n 2 1 2
=~ 220 - —lly - XPI3

q. (2. 1
o @8 —gln(27r02) — 550681 v)

Remark 2.8 (Same estimates from both estimation methods)

1 1
(y—p) (y—p) = —lly - ©l

(2.10)

Since the only part depending on 3 in Equation (2.10) is Q(8 | y), the maximum likeli-
hood estimation yields to the same estimate as the least squares estimation. In particular,

2.3 Disadvantages of the linear model

the least squares solution 3 is both the least squares estimate and the maximum likelihood
estimate of (3.

The arguments presented in this section can be found in Myers et al| (2002)(Chapter 1).

Remark 2.9 (Importance of the linear regression model)

The linear regression models are of importance because of a variety of reasons:

(i) if we have that E[Y;] = f(z;) (for a single covariate z;) is the relationship between
the response and the covariate, then a first order Taylor approximation yields to:

E[Y:] = f(x) + % |o=zo (¥ — o) + remainder

Which leads to (ignoring the remainder and the error term): By + 51(x — z). For k
covariates the first order Taylor approximation yields to Equation ({2.4). Hence, the
linear models approximate the response as a first order Taylor approximation does.
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(ii) one can estimate the unknown p = k+1 parameters Jy,..., 5 by solving p lin-
ear equations simultaneously using the method of least squares. Many programs
facilitate regression model fitting through a implementation of this method.

(iii) further the statistical theory is well-developed and implemented in statistical com-
puter software (like R).

(iv) we can extend the theory of linear models to derive generalized linear models.

On the one hand, the linear regression model and its requirements are easy to un-
derstand. On the other hand, this implies that in many situations the linear model is
considered as too restrictive and not suitable. Some reasons why it may be inappropriate
are:

e we can only apply it for responses which follow a normal distribution.

e for continuous response variables the normality assumption can be unrealistic, e.g.
non-negative and highly right-skewed responses.

These restrictions imply that we cannot analyze discrete responses such as injuries or
patients suffering from specific diseases or the occurrence of natural phenomena (like
hurricanes or earthquakes). In addition we cannot explore binary responses as many
fields in science and engineering do. Often we regard responses being either a success
(encoded with 1) or a failure (encoded with 0).

We thus introduce a more general regression model meeting our requirements:

e applicable to a variety of problems, e.g. by allowing distributions from the expo-
nential family, such as:

— normal distribution (see Subsection

— binomial distribution (see Subsection [A.1.2)),
— Poisson distribution (see Subsection [A.1.3),
— gamma distribution (see Subsection [A.1.4),

e well developed statistical theory, i.e. a lot of literature related to the theory.
e computer software supporting the framework of the model.

The generalized linear models (GLMs) satisfy all of the requirements. Therefore, we
dedicate the complete next chapter to these important regression models.
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3 The generalized linear models

On the following pages we will present important results about generalized linear models.
The content presented below is also explained in |Czado et al.| (2013))(Sections 3.1, 3.2 and
3.3). As mentioned before, we now also allow for normal, binomial, Poisson and gamma,
responses all being members of the exponential family. For this we will introduce the
exponential family and clarify the parameters for the single distributions (the calculation
can be found in the Section [A.T)). Then, we will formulate the generalized linear model
(see Section . In Section we will focus on the theory of estimating the vector
of regression parameters 3 in this setting. The central role is played by the maximum
likelihood estimation. The big difference to linear models is that we now have to solve non-
linear equations, for which we will derive the iteratively weighted least squares algorithm.
We will also focus on the concept of families and link functions and we will show, how
they are implemented in the statistical programming environment of R (see Section .
Afterwards we will define the so-called deviance in Section 3.4l The deviance serves as a
criterion for assessing the goodness of fit of a generalized linear model. The chapter about
generalized linear models will conclude with a short overview and comments on the link

functions (see Section [3.9]).

3.1 Model description

According to [Fahrmeir and Tutz (2001)(p. 19ff.), the density (or probability mass func-
tion, respectively) of the response Y; in a GLM (for ¢ € {1,...,n}) is a member of the
exponential family. This is a very useful class of distributions, which we will now define.

Definition 3.1 (Exponential family)
A random variable Y follows a distribution function of the exponential family, if its density
(or probability mass function, respectively) can be written in the following way:

y0 — b(0)

3 w+ c(y, gb,w)}

o 16.6.0) = exp {
where
e b(-) and ¢(+) are specified functions determined by the distribution.
e ¢ € RT is the so-called scale or dispersion parameter.
e 0 € Ris called canonical or natural parameter.

e w is the weight.

Remark 3.2
For ease of notation we will often write

£y 16,6) = exp {y@‘(—qﬁ’)@ Ty, ¢>} (3.1)

for random variables with distributions belonging to the exponential family. This form is
given in McCullagh and Nelder| (1983)(p. 20f) and it is valid, since we commonly have

a(¢) = —. (3.2)
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Example 3.3 (Members of the exponential family)
According to Hardin and Hilbe (2007)(p. 9), the exponential family includes the following
distributions:

e normal or Gaussian distribution e inverse Gaussian distribution
e binomial distribution e geometric distribution
e Poisson distribution e negative binomial distribution

e gamma distribution

In the following table we summarize important components of the exponential family
distribution for the most important distributions in the setting of generalized linear mod-
els. For each of the following distributions we show in the appendix (see Section [A.1]),
that they belong to the exponential family by deriving the single components. A similar
table can be found in Fahrmeir and Tutz (2001)(p. 21).

Distribution O(p) b(0) ¢ | ¢ known | w | a(¢p) = %
N(u,0?) w £ % | x 1| o2
ScaledBin(n,p) | In(y%) | In(1 +exp{6}) | 1 n |

Poi(\) In(A\) | exp {6} 1 111

I'(p,v) —l% —In(—6) L | x 1|4

Table 3.1: Components of the exponential family distributions for important families.

Similar to the definitions given in Fahrmeir and Tutz (2001)(p. 434) and McCullagh
and Nelder| (1983)(p. 18), we will now define the components of a generalized linear
model.

Definition 3.4 (Generalized linear model)
A generalized linear model will be described by means of the following three components

(i) the random component:
for each observation ¢ € {1,--- ;n} the corresponding random response Y; is inde-
pendent of the other responses and follows a distribution belonging to the expo-
nential family, i.e. its density (or probability mass function, respectively) is of the
form:

fyi 163, 9) zeXp{?Ji@iz—b(@i)

et}

(ii) the systematic component:

for each observation i € {1,--- ,n} we define the linear predictor n; by:
T q Pe-_22)
ni = 1:(B) B e, @3) Bo + Bira Brik (3.3)

where 5y € R is called intercept and B € RP is the vector of regression parameters.
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(ii) the parametric link component:
it relates the random component with the systematic component. Therefore, we
consider (comparable to Equation (2.4)) the mean p; = E[Y;] for each observation
i €{1,---,n}. The difference is, that we do not assume, that the mean is exactly
equal to the linear predictor. Instead we assume a relationship according to the
so-called link function g : G — H (with G, H C R):

g(wi) =mi(B) == B (3.4)

Remark 3.5
e similar to Equation ({2.4)), Definition [2.4| and Remark [2.5| we can rewrite the linear

predictor in matrix-vector notation:
nB)=n=XBeR" (3-5)
e the sets G, H represent restrictions coming from the assumption p; = E [Y;]. Surely
this restriction of y; yields to restrictions on 7; (e.g. through the domain of the
!
linkinverse F'(n) we get n € H).

e throughout the work we will denote by F(n) = F'(n;) the inverse of the link function,
i.e. F'(-)=g71() is a function of . We have F': H — G and p; = F(n;).

e Hence, we have: g is a function of p (i.e. g(u)) with g : G — H. Thus, we have
p € G. For the linkinverse we have F: H — G is a function of n (i.e. F(n)). Thus,
we have n € H. We can see that the link component of a GLM relates the linear
predictor 7; to the expectation pu;.

Theorem 3.6 (Expectation and variance of the exponential family)
Assume Y has a distribution from the exponential family, than we have

E[Y]=V(0)
Var [Y] = b"(0)a(e)

Proof:
A proof can be found in McCullagh and Nelder| (1983))(p. 20f.).

O

Remark 3.7 (Variance function|v(u}))
As described in |[Fahrmeir and Tutz| (2001))(p. 20), the canonical parameter 6; is a function
of the mean p; (i.e. 0; = 0(u;)). Further the variance is of the following form:

UL
Var e | ] = o*(u) = 6202
where the variance function v(-) is determined by v(u;) = b"(6;) = 8282—(96?)- This separation

for the variance is made, because 0”(6;) depends on 6; (and thus on p;) while the other
part a(¢) is independent of 6; (see McCullagh and Nelder| (1983)(p. 21)).
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Example 3.8 (Expectation |and variance for the exponential family)

As in [Fahrmeir and Tutz (2001)(p. 21), we can calculate the expectation and the variance
for the members of the exponential family using Theorem [3.6]and the components we have
presented in Table [3.1}

H Distribution ‘ E[Y]=0(0) ‘ variance funct. = b"(0) ‘ Var Y] = b”(@)% H
N(M) 02) n = 0 1 %2 = g2
ScaledBin(n,p) | p = li’;iie{}e} p(1—p) = (1-::;(51){{90}})2 p(lw_p) — p(ln—p>
Poi()\) A=exp{0} | A 2=
L, v) n=—j i £y

Table 3.2: Moments of generalized linear model families.

3.2 Parameter estimation in generalized linear models

We want to estimate the unknown parameter vector 3 € R? in the following setting. We
assume that Y (as defined in Equation ({2.5) fits in the setting of a GLM with covariate
vector x; for the i-th response Y; given by:

x; = (v31,...,75) €RP (3.6)

Remark 3.9 (Change in notation)
Now we want to introduce a more advantageous way to write the vectors x; and 3 intro-

duced in the Equations (2.2)) and (2.3).

e Equation does not contain any ones for the intercept (z;; = 1). Instead it
begins with z;; as its first component while now z;, is the last component. It is still
a vector of dimension p (p = k-+1), i.e. @; € RP and hence, the design matrix X has
still the same form (i.e. X € R"*P).

e therefore our vectors are shifted in the following sense. We can w.l.o.g. assume the
intercept to be one of the parameters. We therefore denote the intercept £y by 5;
with the following notation:

(1,l’i1, . 7$ik> — (xil, . 7xip)

(Bos B, -, Br) = (B1, B2y - - -, Bp)

e this is just a change in notation proving a more comfortable notation. Nothing
changes in the mathematical theory we have developed so far.

The estimation of 3 can be done by using the mazimum likelihood estimation (MLE) in
GLMs (see Definition . To develop the theory about MLE we need some definitions.
By Theorem and Remark we can rewrite the canonical parameter 6; in terms of
the mean p;. This motivates the following definition:
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Definition 3.10 (Inverse mean function in GLMs)
The inverse mean function A(-) in a GLM is defined through:

h()= )" ()

and satisfies

Further p; is a function of 7; (see Remark and 7; depends on the regression
parameters [, ..., 3, (see Equation (3.4)). Now we want to concentrate on the estimation
of B and thus other parameters are assumed to be known.

In the following we want to introduce the method of maximum likelihood estimation
comparable to|Czado and Schmidt| (2011)(Section 3.3). The maximum likelihood estima-
tion is the most important method to derive an estimator for the unknown parameter
or parameter vector, respectively. In our case this is the vector of regression parameters
B = (f1,...,5,) € RP. Therefore, this method determines the mazimum likelihood esti-
mate (MLE) denoted by B by maximizing the so-called likelihood function. The estimator
(random variable) is called mazimum likelihood estimator (also abbreviated by MLE) and
unfortunately it is also denoted by B This notional inconvenience has also been addressed
in Wood (2006))(p. 60). Hence, we want to find p maximum likelihood estimates 3; for
j € {1,...,p} from the data given by the observations y; we can observe from Y; (for

ie{l,....n)).

Definition 3.11 (Maximum likelihood estimation in GLMs)

Given one single observation y;, the likelihood function of the parameter 3 is given by
its density (or probability mass function, respectively). In GLMs the response Y; follows
a distribution of the exponential family (see Definition . Therefore, the likelihood
function is given by:

i, ~ Exp. Fam. QZl—bOZ
Li(ﬁa¢|yi) ::f(yi|9i7¢)yz P I ex {y—()

see sz. a(¢)

Maximizing the likelihood function to obtain the MLE B is equivalent to optimizing the
so-called log likelihood. The log likelihood for observation y; is given by:

n c(yi,as)} (3.8)

Eq._(B8) 0;y; — b(6;)
a(¢)

By Definition the random responses Y; of a GLM are independent. Therefore, the
joint density is simply the product of all marginal densities (the same holds for probability
mass functions). Consequently, the likelihood function for the vector of observations
Yy = (y1,...,yn)" (We observe from the vector of responses Y) is the product of the
likelihood functions L;(3, ¢ | y;) for the single observations. Hence, we get:

186 1 9) = [T 18,01 5) 89 exp {Z (P2 o)) }

b B exp {Z (B, 9 | yz)}
i=1

Li=0UL(B,¢|y):=mn[L(B,¢|y)] + c(yi, ) (3.9)

=1
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In this setting the log likelihood is given by:

18,6 | y) =l (LB, | y)] Zzaqﬂyz—z(%{—bmmym) (3.10)

¢)
Therefore, the log likelihood in a GLM is given by the sum of the log likelihoods for the
single observations y; for i € {1,...,n}. This derivation can be verified by comparing the

steps to the calculation made in Wood| (2006))(p. 611ff.).

Now our goal is to maximize the log likelihood given in Equation (3.10). For this we
must at least satisfy the first order optimization criterion: uB, ;'y =0Vje{l,...,p}and
hence we need partial derivatives for iterative gradient descendant methods (see |Ulbrich

and Ulbrich| (2012))). As calculated in Dobson| (1999)(p. 146) we receive:

dl; _ Yi — M (Gui)x“mn&m Yi — Wy (aﬂz>x (3'11)
B Var[Yi] \om )" V' (0:)a(g) \ On;

Bd)!y Zal EQ-ZQH — M (gf;)x) (3.12)

Now we define the weights in GLMs (see McCullagh and Nelder| (1983))(p. 33)) to
rewrite the optimization condition in Equation (3.12):

Definition 3.12 (Weights in GLMj5)
Let b”(-) be the variance (see Remark [3.7), then the weights in generalized linear models
are defined through:

ous \ 2
Wi = Wi(B) = <ba(9>)

Remark 3.13
With this definition the formula in Equation (3.12) is equivalent to:

ABoIY) = Lo
=) o W) (52 o,

In the following calculations we will derive the quantities presented in Fahrmeir and
Tutz (2001) (p. 381f.) and [McCullagh and Nelder| (1983))(p. 31ff.) using our notation.

Remark 3.14

Since a(¢) is independent of 3, we don’t need to consider the scale parameter ¢ while
optimizing. In [Fahrmeir and Tutz (2001)(p. 38) this is reflected by assuming w.l.o.g.
¢ = 1. For this reason the following definitions are given in their unscaled forms, not
including the parameter ¢. This is sufficient to derive point estimates of 3.

Following the calculation in McCullagh and Nelder| (1983))(p. 32ff.), it is sufficient to
solve the so-called unscaled score equations of a GLM in order to get the MLE 3 of 3:
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Definition 3.15 (Unscaled score equations in GLMs)
We define the unscaled score through:

Sj(ﬁa y) = Z (yl - /’I/Z)Wl(ﬁ) (Z_ZZ> Tij = 0

i=1

The set of equations defined through s,(8,y),...,s,(3,y) is called the unscaled score
equations. Again we define the corresponding vector through:

s(B,y) == (s1(B,9Y), ..., 5(8, y)' eRP (3.13)

This vector is called the p-dimensional score function.

Since the likelihood equations are non-linear, they often can be solved only numerically
through iterative algorithms (see [Fahrmeir and Tutz| (2001)(p. 42)). One of them is the
Fisher scoring algorithm, which will be derived now.

Definition 3.16 (Unscaled Hessian matrix in GLMs)
The unscaled Hessian matrix in a GLM is given by:

asl(ﬁvy) 851(:8’y) asl(ﬁvy)
0B B2 T 9Bp
68(6 y) 882(/37:’/) aSQ(IB’y) 832(/373/)
) 0 9] T 9]
H=H(By) =08 . . o
65p(ﬁyy) 85p(ﬁzy) 85?(B7y)
op1 B2 T 0Bp
PUBy)  UBy) 9°1(B,y)
ik B B
2 Y Y Y
_ (3 l(B,y)) _ | o @ o 9t | o e
9B:i0B; /i jeqr,...p) : : :
PUBy) *UByY) 1(B,y)
8512851 6/812852 e 62617

Remark 3.17 (Observed Fisher information matrix)
The negative of H is called the observed Fisher information matrix:

’1(B,y)

Zobs(B) = —H(B,y) = — (W) - € RP*P
IR /{1 p

(3.14)

,,,,,

Definition 3.18 (Unscaled Fisher information matrix in GLMs)
The unscaled Fisher information matrix (also called the expected Fisher information) is
given by the expectation of the negative of the unscaled Hessian matrix:

T:=1(B) = B[~ H(B,9)] = E [Zn(8)] € R”
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We now compute the component Z;; (i.e. the entry in the i-th row and the j-th column

H,, 9°1(B, y)

of the unscaled Fisher information matrix Z) as in McCullagh and Nelder| (1983)(p. 32)
_ 85z(ﬁ7y> Def,_i n
9506,

Therefore, we first compute one entry of the unscaled Hessian matrix

0p;

5 |2 e mweio) (5 x]
gl b

~ g {b//(ez) <g/;;) x”] - Zn:

<aﬂz)2x T
=1 b,/(ez> anz

(3.15)
Now we have to take the expectation of the negative of Equation - to get the corre-
sponding entry of the unscaled Fisher information matrix

0B,

I [_H(/87y)]ij =k l_m]

By N~ 1 <8uz>2 PR
;b”(ez)

We define:

o T ; W, . (3.16)
W= w(B) "ER diagwi(8),..., Wa(8)) (3.17)
Wi
W, 0
= diag(W1, W) =

anl
W’!L
Using this very advantageous notation we can rewrite the unscaled Fisher information
matrix as (see also Fahrmeir and Tutz (2001)(p. 41))
I(8) = X"W(B)X
Remark 3.19
Here X € R™"*? is defined as in Definition 2.3, We had
T
L
Lo T Xn
X = . = X :(ﬂjl,wg, ..,mn)ERp
T,
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Remark 3.20 (Finding stationary points using the Newton algorithm)

A stationary point of a function f : R® — R (f € C?) can be found using the so-called
Newton algorithm. The algorithm seeks for a stationary point z* with V f(z*) = 0 by
using the following iterative scheme (see [Ulbrich and Ulbrich (2012)(algorithm 10.6)):

xn+1 =" — v2f<xn)71 Vf(l‘n)
————
inverse of the Hessian matriz

Our function to be optimized (i.e. maximized) is the log likelihood function, i.e.

f=1B,¢]y)
= Vf=s(89)

Def.
= vif = H(f) " H(B,y)
Therefore, we would imagine that an iterative scheme such as:
B = 8" — H(8"y)s(6")

would suffice to find the maximum likelihood estimate B However, we have to face the
following problems:

e only for canonical links the expected Fisher matrix is equal to the observed Fisher
information matrix. We would like to avoid dependence on the data.
= We take the expected Fisher information matrix in our further calculations.
Another advantage is that it is easier to evaluate and always positive semi-definite
(see Fahrmeir and Tutz (2001)(p. 42)).

e the Newton algorithm opens up a whole theory about convergence and starting val-
ues (i.e. one could also find a minimum using this algorithm, no global convergence).
= Not regarded, but the ambitious reader can read more about it in [Ulbrich and
Ulbrich| (2012).

e MLEs might not exist and one has to convince oneself that it is (in case of existence)
unique.
= Not regarded, but the ambitious reader can read more about it in Fahrmeir and
Tutz (2001) (p. 43ff.) and the literature given there.

The algorithm, which is derived out of these considerations is the so-called Fisher
scoring algorithm (compare to Fahrmeir and Tutz (2001)(p. 39ff.)). The result 8 may
not be a global maximum of (3, ¢ | y) but it is a solution to s(3,y) = 0.

Definition 3.21 (Fisher scoring algorithm) .
(i) Choose initial values 3° (i.e. an initial estimate 3°) and accuracy ¢ € R*. Let us
denote by 3" the current estimates of 3.

(ii) while |3" — B"T1|| > e do: for each step r € Ny
gt =" +171(B")s(8",y) (3.18)

(iii) Set B:= @r+!



3.2 Parameter estimation in generalized linear models

Remark 3.22 (Rewrite the Fisher scoring algorithm)
The Fisher scoring algorithm determines the MLE 3 of 8. There is however another way
to rewrite this algorithm using iteratively weighted least squares. An advantage is, that
we can use statistical software to estimate the regression parameter vector 3 (see Hardin
and Hilbe| (2007))(p. 29)). Hence, we will now derive the iterative weighted least squares
algorithm based on the Fisher scoring algorithm.

The iteration in Equation (3.18]) can be written as

I@r—l—l

=08"+1
SI(BNE =

H(B)s(B",y)
Z(B")B" +s(B",y)

19

(3.19)

Therefore, we calculate the j -th element of the right hand side in Equation (3.19):

(Z(B")B" + s(B",y));

Zu(B") Lia(B") ... Ti(B")
1-21 r IQQ T Izp r

| [P Pl BN )T ()
Ipl(zgr) Iﬂ(ﬁr) Ipp(ﬁr)
Ill(ﬁT) Il2(ﬁr) Ilp(ﬁr) H sl(ﬁ’",y)

_ 121(,3T) 122(5T) I2p(ﬂr> 9 n 52(,3T7y)
18 1) o 1) \5) \etew))

Zz 1 (BT 8L+ 51(87,y)

_ | 25 e (BT)5 + 52087 y)

P\ L,.(B7)8, + 5,87, y)

z=1

Eq. Zn
- m=1

_ Wm (ﬁr)xm] Tmz

P n

-3

z=1 m=1

Won(B" )i Tz 5% + Z

= Wi(B")xy
=1

T ,,,Def B4 .
7:1: ﬁ Rem. mnz

p
= Z Ijz(/BT) ﬁz +

~ N
Z xizﬁz +<yl - My ) our
z=1 K

s;(B",y)

~——

Def?:l (=)W, (ﬁr)<6n )xu

i (32)-

)t 7Sp(ﬁray))—r

(3.20)
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Remark 3.23
The variable Z7 :=nl + (y; — pu}) (ng
observation vector” in [Fahrmeir and Tutz (2001)(p. 42)).

) is called adjusted dependent variable (or “working

Calculating the j -th element of the left hand side in Equation (3.19)), we get:

'r) r+1

B7) Li2(B") ... L,(B 4
Iu(B") Zn(B") ... Zy(B") r+1
Ip (:BT) Tp(B7) .. Ipp(.ﬁ’”) 5;#1

o T (8782
X D878

J

S\ T (875
- Z 7;.(8") Bt = Z Z Wi(B")wijai 30

1 5 z=1 i=1
q. .
= i Wi(BT)zijmiz

n P n
=D WiBNzy Y @B =) Wi(B )y (3.21)
=1 z=1 i=1
::cTﬁT"i‘l Defi r+1

Rem. @

If we combine Equation (3.20) and Equation (3.21), we get:
S Wi(B iyt =Y Wi(B" )i 2] vief{l,....p}
1=1 i=1

With W(3") defined similarly to Equation (3.17)), we can rewrite this equivalently in
matrix-vector notation (compare to Fahrmeir and Tutz| (2001)(p. 42)):

Z1
T +1 T Zg
X W)X =X W(E") | .
N N—— .
=W =W r
Zn
N——
=Z"
e XTWrxgtt=X"wrzr (3.22)
&/ = (XTW X)X T ZT (3.23)

Remark 3.24 (Advantages of the IWLS)

According to Fahrmeir and Tutz (2001)(p. 42), the advantage of the IWLS is that one
can use results for the least squares estimation for the iteratively weighted least squares
after adequate modifications.
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Remark 3.25[ (Orjiigin of the name “iterative weighted least squares”)

In Subsection [2.2.1| we derived the ordinary least squares estimation in linear models.
Now we want to derive the concept of weighted least squares. The calculation is similar
to the calculation we made for the ordinary case and can be found for instance in [Myers
et al.| (2002)(p. 49ft.).

Definition 3.26 (Generalized least squares estimator of (3)
We consider the model:

Z=XB+e with & ~ N, (0,W)

with W € R™™ known, positive definite (i.e. only positive eigenvalues). Then, we get B
by solving the so-called generalized normal equation (as seen in Remark for the least
squares estimator):

X"WXxg=X"wW'Zz (3.24)
SB8=X"W'X)'XTwW'z

Here E depends on the weights (more precisely on the variance-covariance matrix W).
Thus, 3 is called the weighted least squares estimator.

With this intuition we can understand that Equation corresponds to the generalized
normal equation (as given in Equation (3.24)). We examine the weighted least squares of
the response Z" with design matrix X and weights (/W")~!. Hence, it seems reasonable
to speak of iteratively weighted least squares (IWLS).

Finally, we can present the iterative weighted least squares (IWLS) algorithm, which is
derived from the iterative Fisher scoring algorithm (see Definition [3.21)). This routine is
also used in the glm function in R in the default method (see help(glm.fit)).

Definition 3.27 (IWLS for estimation of 8 in GLMs)
(i) Choose initial values 3° and accuracy ¢ € R*. Let us denote by 3" the current
estimates of 3 (for r € Np).

(i) while ||8" — B"t!|| > ¢ do: determine for each observation i € {1,...,n}
e the current linear predictors: 7! := x] 3"

the current fitted means: g7 := g~ (1) fem. B3 F(n)

: G (O
current canonical parameters: 07 := h(ul)

~
r

adjusted dependent variables: Z7 := 77 + (y; — p1f) (%

dyg
2
. (di )
91':9-T d, i -
v " M=

Regress Z on x; (i.e. Z;,...,x;y) with weights (TW7)™' to obtain new estimates

B7 1, ie. derive 37! using (see Equation (3.23) and Remark [3.25)):

Mz:ﬂ;f')

-1

° VVZ‘T = [b"(@l)

ﬁ'r'-i—l — (XTWTX>71XTWTZT
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Remark 3.28 (Asymptotic normality of the MLE) R
According to Fahrmeir and Tutz| (2001)(p. 44), the maximum likelihood estimator 3 is
asymptotically normally distributed. We have the following asymptotic behavior for a
large number of observations (n large):

B~ N,(B,Z71(8))

Therefore, we also get an asymptotic result for the variance-covariance matrix of the
maximum likelihood estimator 3:

Cov <E> ~T'(B)

Remark 3.29 (Derivation of the IWLS)

For the derivation of the IWLS in our notation we cited McCullagh and Nelder| (1983)
and [Fahrmeir and Tutz| (2001)) for the most important steps. Similar derivations can also
be found in other literature about GLMs, for example in [Dobson| (1999)(see Section 4.4).
But as every book (or author, respectively) has its own notation, it is advisable to restrict
oneself to only few resources.
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3.3 Families and link functions

By the term family we refer to the distribution of the error term and the link function
in the model. In R this is one of the arguments, which have to be specified in the glm
function (see help(glm)). If we call a family without specifying the link function, then
the default link will be used. The link functions that are already implemented in R can
be seen in Figure [3.1. The default links are printed with blue letters. However, it is also
possible to call the glm function with user-defined links (see Chapter @ We need to
choose the link according to the data we want to examine. The following diagram may
help (see Fahrmeir and Tutz (2001) and help(family) in R):

available

data

( Continuous response j ( Counting response ) ( Binary response )

Gaussian family Poisson family Binomial family

Gamma family

Inverse Gaussian
family

Figure 3.1: Families implemented in R (quasi families are missing) with the names of
accepted link functions. The default links are printed with blue letters.
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Remark 3.30

In the following we will not examine every possible link function and every possible family.
In particular, we will not focus on the inverse Gaussian family. All the other families will
be discussed with their corresponding default link functions. For the binomial distribution
the probit link function will also be discussed.

For a link function in R we need the following specifications (see help(make.link)):
(i) linkfun: the link function, i.e. a function of the parameter L.
(ii) linkinv: the inverse link function, i.e. a function of the parameter 7.

(ili) mu.eta: the derivative (ill—‘;), i.e. the first derivative of the linkinv function. It is a
function depending on 7.

(iv) valideta: a function of n which states “TRUE” if n is in the domain of linkinv.

(v) name: the name to be used for the link function.

3.3.1 Gaussian family

We consider the case of a normal distribution (i.e. we assume that the errors follow
a normal distribution) and choose the identity link. This leads us to the simple linear
regression model as introduced in Definition 2.1} Consequently, the linear predictor and
the mean are equal (see Equation (2.4)). The relationship between the linear predictor
and the mean is reflected by the identity link. It is the most common used link for the
Gaussian family and thus it is set as the default link in R (i.e. 1ink — “identity”). However,
if we notice that a non-linear relationship seems more appropriate, we can also choose
another link (see Fahrmeir and Tutz (2001)(p. 23)). The log link (i.e. g(u) = In(u)) or
the inverse link (i.e. g(p) = l%) are allowed (see also Figure . We would like to refer
to this situation using the term Gaussian regression model.

Remark 3.31
e the mean of the Gaussian distribution satisfies © € R. Hence, we have G = R.

e since the link is the identity we have n € R and consequently we have H = R. This
is also the restriction encoded through valideta in the link function.

Example 3.32 (Gaussian family (1ink = “identity”))
In R the identity link is defined through:

make.link("identity")

## $linkfun

## function (mu)

## mu

## <environment: namespace:stats>
##

## $linkinv
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#it
#i
i
i
#it
#it
#i
i
i
#i#
#it
#it
i
i
##
#it
#it
i
i

function (eta)
eta
<environment: namespace

$mu.eta

function (eta)
rep.int (1, length(eta))
<environment: namespace

$valideta

function (eta)

TRUE

<environment: namespace

$name
[1] "identity"

attr(,"class")
[1] "link-glm"

(i) linkfun: n=g(u) =p

.stats>

.stats>

.stats>

(i) linkinv: u=g'(n)=F(n) =n

(iil) mu.eta: %(F(n)) =1

dn

)
)
)
)

(iv) valideta: 1,y = TRUE

3.3.2 Binomial family

25

Therefore, the identity link function in a Gaussian regression model is defined through:

Let us consider binomial responses. According to [Fahrmeir and Tutz (2001)(p. 24), the

setting of a binomial regression is the following.

Definition 3.33 (Binomial regression model)

Consider we are given the data for n observations i.e. for i € {1,...n} we are given the
realizations y; of the responses and the values of the known covariates x;. Recall that

the y; are realizations from the random variable Y;, where Y7, ..

., Y, are independent (see

Definition [3.4). Since the responses are binary, they can only take values in {0,1}, ie.
Vi e {1,...n} we have Y; = 0 or Y; = 1. Therefore, we can determine the binary variable
completely by its success probability. Given a covariate vector x;, the success probability
is defined through:

pii=plx;) =P Y, =1|x)
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Remark 3.34
e the success probability must fulfill the constraint : p(x;) € [0,1] Vi € {1,...n}.

e please notice that for a binary random variable the expectation is the success prob-
ability, i.e. we have p; = E Y] =: ;.

In the following we want to restrict ourselves to two important models for the success
probability: the logistic regression model and the probit regression model as given in
Fahrmeir and Tutz| (2001)(p. 24ff.).

Definition 3.35 (Logistic regression model)
In the logistic regression model we take:

X T
pla) =P (v =1|a) = SRS

By replacing through known quantities we get:

pi = pi = pai) = F(m) = %

Definition 3.36 (Probit regression model)
In the probit regression model we take:

Rem. [A3]
pla) =P (Yi=1|z) "=z B)
By replacing through known quantities we get:

pi = pi = p(x;) = F(n;) = ()

Remark 3.37

As described in |[Fahrmeir and Tutz| (2001))(p. 25), we do usually consider scaled binomial

responses when examining binomial responses. l.e. we consider Y.* := % as responses

(2

(for i € {1,...,n}). For the distribution of Y;* we introduce the term “scaled binomial
distribution”. In the following we will only refer to GLMs with scaled binomial responses

and thus we introduce the following notation.

Definition 3.38 (Scaled binomial distribution)
For Y ~ Bin(n,p) we say Y* := X ~ ScaledBin(n,p) follows a scaled binomial distribu-

tion. For the ordinary binomial distribution we can take values k& € {0,1,...,n}, while
for Y* ~ ScaledBin(n,p) we have k* := £ € {0,122 . 2=11}) In Subsection

we show that the scaled binomial distribution is a member of the exponential family.
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For Y* ~ ScaledBin(n,p) the expectation is E[Y*] = u = p € (0,1). Therefore,
we seek for a link function g : (0,1) — R. Using the Definitions [3.35 and [3.36| and
g(-) = F7(:) we can see that such functions are given by:

e g(u;) =In (1‘_L—m> (inverse of the distribution function of the logistic distribution)

o g(u;) = @ 1(u;) (inverse of the distribution function of the standard normal distri-
bution)

If we take the inverse of the distribution function of the logistic distribution as link
function, we speak of the logistic regression. Likewise, if we take the inverse of the distri-
bution function of the standard normal distribution, we speak of the probit regression.

Remark 3.39
e we have for the expectation p € (0,1). Therefore, we choose G = (0,1).

e since the link is either logit or probit we receive n € R as restriction. Hence, we have
‘H = R. This is also the restriction encoded through valideta in the link function.

Example 3.40 (Binomial family (1ink = “logit”))
In R the logit link is defined through:

make.link("logit")

## $linkfun

## function (mu)

## .Call(C_logit_link, mu)

## <environment: namespace:stats>
##

## $linkinv

## function (eta)

## .Call(C_logit_linkinv, eta)

## <environment: namespace:stats>
##

## $mu.eta

## function (eta)

## .Call(C_logit_mu_eta, eta)

## <environment: namespace:stats>
##

## $valideta

## function (eta)

## TRUE

## <environment: namespace:stats>
##

## $name

## [1] "logit"

##

## attr(,"class")

## [1] "link-glm"
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We made the efforts to see how these C-code functions are defined:
e linkfun: .Call(C logit link, mu)

e linkinv: .Call(C _logit linkinv,eta)

e mu.eta: .Call(C_logit _mu_eta,eta)

Remark 3.41 (Assessing C-Code in R)

Since the code is written in the programming language C, we don’t have access to it
directly. We are also not able to view it with R without further ado. We are following
Ligges (2006) to assess the underlying C-code. Especially the section “Compiled Code
Sources” is of interest. Therefore we proceed taking the following steps:

(i) we download the R source bundle from the CRAN mirror (e.g. GWDG Goettingen
under http://ftp5.gwdg.de/pub/misc/cran/src/base/R-3/R-3.1.0.tar.gz). It
is important to download the R source bundle, since the source files are not included
in the binary version of R, nor in the included packages. This way we can examine
the original sources R has been installed from.

(ii) we receive a file ending with “....tar.gz”. This file is compressed twice. If you have
unpacked it entirely, you can find the source code under

“../src/library/stats/src/family.c”

(e.g. if we download “R-3.1.0.tar.gz” we can find the C source file “family” un-
der “R-3.1.0/src/library/stats/sr¢” in the decompressed folder). For other source
code in different packages or package bundles we can find the code under “Package-
Name/src/” or “BundleName/PackageName /src/”.

Therefore, we can define the logit link function in a binomial regression model through:

(i) linkfun: n=g(p) =In <1I_LM>

(i) inkinv: =g~ (n) = F(n) = 1520k

(iii) mu.eta: P (F(n) = g,

(iv) valideta: 1y, cry = TRUE


http://ftp5.gwdg.de/pub/misc/cran/src/base/R-3/R-3.1.0.tar.gz
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Example 3.42 (Binomial family (1ink = “probit”))
In R the probit link is defined through:

make.link("probit")

## $linkfun

## function (mu)

## gnorm(mu)

## <environment: namespace:stats>
##

## $linkinv

## function (eta)

## {

## thresh <- -gnorm(.Machine$double.eps)
#H eta <- pmin(pmax(eta, -thresh), thresh)
#H pnorm(eta)

## ¥

## <environment: namespace:stats>

##

## $mu.eta

## function (eta)

## pmax(dnorm(eta), .Machine$double.eps)
## <environment: namespace:stats>
##

## $valideta

## function (eta)

## TRUE

## <environment: namespace:stats>
##

## $name

## [1] "probit"

##

## attr(,"class")

## [1] "link-glm"

Therefore, the probit link function in a binomial regression model is defined through:

(1) 1inkfun: n = g(,LL) _ qnorm(,u) quantile:function (Ifl(,u)
. . . . 1 o o distr. fﬂnc. see
(i) linkinv: p =g~ (n) = F(n) = pnorm(n) = =" (1)

density see

.. . dp _ =
(iii) mu.eta: G(F(n)) = dnorm(n) o T3

f(10,1) :=p(n)

(iv) valideta: 1g,cry = TRUE
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3.3.3 Poisson family

As explained in Fahrmeir and Tutz (2001)(p. 36) we can use the Poisson distribution to
model count data (i.e. the number of events occurring in a fixed time period). Hence, we
have a discrete and non-negative response with values in Ng. We expect E[Y] =A=pu >0
(see Remark [A.7). In R the default link is the log link. Two other possible links are the

identity link (i.e. g(p) = ) and the sqrt link (i.e. g(p) = \/1t) (see Figure .

Definition 3.43 (Poisson regression model)

We want to refer to the following setting using the term Poisson regression model. Assume
we want to model count data and take the Poisson family with the log link. Then, we
have:

m =z B=g(u)=In(u)
pi = F(n;) = exp{n;}

Remark 3.44
e the mean of the Poisson distribution fulfills © = A € R*. Hence, we have G = R™.

e since we take the log link we have € R (the domain of exp(+) is R) and consequently
we have H = R. This is also the restriction encoded through valideta in the link
function.

Example 3.45 (Poisson family (1ink = “log”))
In R the log link is defined through:

make.link("log")

## $linkfun

## function (mu)

## log(mu)

## <environment: namespace:stats>

##

## $linkinv

## function (eta)

## pmax(exp(eta), .Machine$double.eps)
## <environment: namespace:stats>

#i#

## $mu.eta

## function (eta)

## pmax(exp(eta), .Machine$double.eps)
## <environment: namespace:stats>

##

## $valideta

## function (eta)

## TRUE

## <environment: namespace:stats>

##
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## $name

## [1] "log"

##

## attr(,"class")
## [1] "link-glm"

Therefore, the log link function in a Poisson regression model is defined through:
(i) linkfun: n = g(pu) = In(p)

)
(i) linkinv: p =g~ (n) = F(n) = exp{n}
(ili) mu.eta: %’%(F(n)) = exp{n}

)

(iv) valideta: 1y, cry = TRUE

3.3.4 Gamma family

As described in [Fahrmeir and Tutz| (2001)(p. 23) we can use the gamma distribution for
continuous and non-negative responses. Hence, we expect IE[Y] = p > 0 and thus the
shape parameter v is positive (i.e. v > 0). This can also be derived from Remark
For instance, data sets about insurance claims or the amount of rainfall would fit in the

setting of a gamma regression. In R the default link is the inverse link. Also the log link
(ie. g(u) = In(p)) and the identity link (i.e. g(u) = ) are allowed (see Figure [3.1)).

Definition 3.46 (Gamma regression model)

We want to refer to the following setting using the term gamma regression model. Assume
we model a continuous and non-negative response taking the gamma family with the
inverse link. Then, we have:

1
pi =F(n;) = —

1
== f=g(m) = -

)

Remark 3.47
e the expectation of the gamma distribution is positive (i.e. u € R*). Therefore, we
choose G = RT.

e since the link is the reciprocal we have n # 0 as restriction. Hence, we have H =
R\ {0}. This is also the restriction encoded through valideta in the link function.
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Example 3.48 (Gamma family (1ink = “inverse”))
In R the inverse link is defined through:

make.link("inverse")

## $linkfun

## function (mu)

## 1/mu

## <environment: namespace:stats>
##

## $linkinv

## function (eta)

## 1/eta

## <environment: namespace:stats>
##

## $mu.eta

## function (eta)

## -1/(eta"~2)

## <environment: namespace:stats>
##

## $valideta

## function (eta)

## all(is.finite(eta)) && all(eta != 0)
## <environment: namespace:stats>
##

## $name

## [1] "inverse"

##

## attr(,"class")

## [1] "link-glm"

Therefore, the inverse link function in a gamma regression model is defined through:

(i) linkfun: n = g(u) = i

(ii) linkinv: u=g'(n)=F(n) = %

(ili) mu.eta: Z_/;(F(U)) _ _n%

(iv) valideta: 1 ({neR}N{n#£0}}

3.4 Goodness of fit of a generalized linear model

Assume we have chosen a family with a suitable link function in a generalized linear
model for our response. Now we would like to assess how good the GLM of choice fits to
the given data. We will follow McCullagh and Nelder| (1983)(p. 24ff.), to introduce the
deviance as a measure for the goodness of fit.
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Definition 3.49 (Fitted mean)
For one observation (i € {1,...,n}) we are able to estimate the mean p; of Y; by (using
Equation (3.3)) and the link function g as defined in Equation (3.4))):

fis =g (] B)

If our model is good, we would expect, that ||z — y||2 is small (i.e. there is not much

discrepancy and the vector of the fitted means p is close to the vector of observations y).

In the following we want to derive a method to measure this discrepancy. Therefore we

introduce a notation to describe how many parameters or covariates, respectively (since
p = k+1) our model should contain:

Definition 3.50 (Null model and saturated model)

We have to decide how many parameters our model should contain. Given n observations
Y1, - -+, Yn, we could fit models containing between 1 and n parameters (i.e. p € {1,...,n}).
Therefore, we will have two extreme models:

e the null model
the null model is the simplest model. It does not contain any covariates at all and
it consists of only one parameter: ;. Using Equation (2.4) we obtain:

pi = EY] = 5o
Therefore, this model implies that the responses Y7, ..., Y, have a common mean.

e the saturated model
the saturated model (also called full or maximal model) is the largest well defined
model for n responses. In this model n parameters are included (one for each
observation). We have k = n — 1 covariates and with Equation (2.4 we get:

N Eq. @7)
i = E[Y;] = Bo + Brai + Povio + - - + Braan 2 Yi (3.25)

Therefore, the mean fits perfectly on the data (i.e. no discrepancy).

Remark 3.51 (Reasonable GLMs)

Any informative and acceptable GLM will range between the null model and the saturated
model. The null model is considered being too simple while the saturated model only
repeats information about the given data.

Since we derived the log likelihood for GLMs in Equation ({3.10]), we can use it to assess
the goodness of fit for a model with p parameters. We rewrite the log likelihood in terms
of the mean vector p instead of the vector of canonical parameters 6 := (6,...,6,)".

Definition 3.52 (Mean parameterization of the log likelihood)
We can rewrite the log likelihood function in terms of the mean vector p.

18019 =3 (M o)

see Eg. Z (h(ﬂz‘)yz’ — b(h(p)) + c(ys, ¢)> =1, ¢ | y)

a(¢)

This is called the mean parameterization of the log likelihood.
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Definition 3.53 (Scaled deviance D,(u,y, ¢))
Let us denote by g := (jiy,..., )" the vector of fitted means. Further we will denote by

Z(Bmax, ¢ | y) the maximized log likelihood of the saturated model while Z(B, ¢ | y) denotes
the maximized log likelihood for the model of interest. According to [Wood| (2006)(p. 70)
the scaled deviance Dg(1,y, ¢) is then given by:

Du(iy:0) =2 1By 6 | y) = 1B, | y)]
e P BBy Uy, 6| y) ~ U@ 6| y) |

Def. B3 Yy —b(h(y; R(57)y; —b(h(
!Z ( v3)v; ((yz))+c(yi7¢)_ (uz)yz(m( (77)) —e(ys ¢))

E5
a(?)
n
=2)
i=1

n (
(h(yi)yi b(h(y:)) — h(i)yi + b(h(/?i)))
a(¢)

—2)° (h(ys) — (i) )yi — b(h(ys)) + b(h(fzi))
P a(®)
oy s ei-ma—( ;)(91) + () (3.26)

Assuming that a(¢) = g (see Equation (3.2))), we can rewrite Equation ([3.26) in an
unscaled version. Often one refers to the unscaled deviance using the term deviance.

Definition 3.54 ((Unscaled) deviance D(u,y))
Let the scaled deviance be defined as in Equation (3.26)):

Dy(fi,y. ¢) _229 0i)y £§9>+b<9 _QZM(@ 6.y —¢b<9i>+b<e,~)

Then, according to McCullagh and Nelder (1983)(p. 24) and [Wood (2006)(p. 70), the
(unscaled) deviance D(p,y) is given by:

D(ji. y) = 6D (i, y. ¢ —2sz[9 )i = b(8:) + b()
The unscaled deviance is independent of ¢.

Remark 3.55 (Distribution of the deviance)
o distribution of the scaled deviance:
According to Wood| (2006)(p. 70) we will have

Dy(,y,¢) ~ xa_,

if the model is good (i.e. if it describes the data in a good way).
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3.5 Overview and comments

e distribution of the unscaled deviance:
Following [Fahrmeir and Tutz (2001)(p. 50f.), we can assume for a sufficiently large
number of observations that:

D(ﬁ'a Y, ¢) ~ ¢X?pr

Remark 3.56
All in all we want to take the GLM delivering the minimal deviance, i.e. the minimal
discrepancy between the fitted means [; and the observations of the response ;.

Remark 3.57 (Calculation of the deviance)

The deviance of the distributions used throughout this thesis can be found in |McCullagh
and Nelder| (1983)(p. 25). In R the unscaled deviance is calculated as the value for the
deviance according to the common formulas (see also |Czado et al. (2013)(p. 41f. and p.
49) and |Wood, (2006) (p. 61 and p. 70)). In Section we verify the calculation of the
deviance for two examples of the Gaussian regression.

3.5 Overview and comments

The sections before lead to the following table:

Gaussian | Binomial | Binomial | Poisson | Gamma
Component | Notation | Identity | Logit Probit Log Inverse
linkfun g(p) 1 In <ﬁ> D1 (u) In(p) %L
linkinverse | F(n) n 1?;2;”37 ®(n) exp{n} %
mu.eta L(F(n) |1 Tt | ¢(n) exp{n} | —»
valideta Lres. tony | Linery | Linery Linery | Linery | Lignerininzo}

Table 3.3: Overview: common link functions with their components in R.

Remark 3.58
Further interesting tables are given in |Hardin and Hilbe (2007)(Appendix A p. 356ff.).

Definition 3.59 (Canonical link function)
According to Fahrmeir and Tutz (2001)(p. 20), a link function ¢(-) = g(u;) = g(E[Yi]) is
called canonical or natural if the following holds:

0 =0(u)=m==z/P
= g(E[Yi]) = g(u:) = 0; = 0(:) Vie{l,...,n}
Remark B.60
Definition 3.59|is a restriction to the function g(-) since ; = g(u;) = g(b'(6;)) (see Equation

and

T'heorem |3.6)).
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Example 3.61 (Canonical links)
According to McCullagh and Nelder| (1983)(p. 24) we have:

e for the Gaussian regression model the identity link (i.e. g(p) = p) is canonical.

e for the binomial regression model the logit link (i.e. g(p) =In (ﬁ)) is canonical.

e for the Poisson regression model the log link (i.e. g(u) = In(u)) is canonical.

e for the gamma regression model the inverse link (i.e. g(pn) = ) is canonical.

==

As mentioned in Remark we can derive restrictions for the expectation u (i.e.
g € G) and restrictions for the linear predictor n (i.e. n € H). These restrictions are
summarized in the following table:

Distr. of | Res. for | Linkinverse Res. for
error pi (by G) | F(n) i (by H)
Normal |G =R F(n) =n H=R
Scaled | G =(0,1) | F(n) = 22l [ 4 =R
binomial F(n) = ®(n) H=R
Poisson | G=R" |F(n) =exp{n} | H=R
Gamma | G=R"t |F(n) = % H =R\ {0}

Table 3.4: Summary: restrictions for the common link functions.
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4 Data sets

In this chapter we introduce the data sets, which we will examine throughout this thesis.
Five of them were also studied in (Czado| (2007) (namely: pcb.ex, beetle.ex, bys.ex,
rotifier.ex and mining.ex). We also provide an example of the gamma regression
model by presenting data about the Canadian automobile experience as given in the data
set carinsur.ex. This example can be found in |Bailey and Simon| (1960). Sometimes it
is necessary to transform the covariates or the response to obtain a linear relationship.

4.1 Gaussian family

Example 4.1 (PCB concentration in lake trouts)

As in [Bates and Watts (2007)(see p. 3 and p. 267), we examine the data gathered
about 28 lake trouts of the Cayuga Lake in New York. The first column (i.e. pecb) in
Table contains the observed concentrations of PCB (= polychlorinated biphenyl) in
the trouts in parts per million. We also have information about the age of the trouts as
given in the third column age. The authors recommend using a simple linear regression
model (i.e. family = “gaussian”, link = “identity”) with response y; = In(pcb[i]) as given
in the second column [og.pcb. The covariate will be the centered age as given in the
fourth column age.cen (i.e. xy; = x; = ageli] — mean(age)). Figure illustrates the
linear interaction between the centered age (covariate) and the logarithm of the PCB
concentration (response).

pcb | log.pchb | age | age.cen pcb | log.pch | age | age.cen
0.6 | -05111] 1 -4.536 3.4 1.224 | 6 0.464
1.6 0470 | 1 -4.536 9.7 2272 | 6 0.464
05| -0.693 | 1 -4.536 8.6 2152 | 6 0.464
1.2 0.182 | 1 -4.536 4.0 1.386 | 7 1.464
2.0 0.693 | 2 -3.536 5.5 1.705 | 7 1.464
1.3 0.262 | 2 -3.536 ||| 10.5 2351 | 7 1.464
2.5 0.916 | 2 -3.536 ||| 17.5 2.862 | 8 2.464
2.2 0.788 | 3 -2.536 |||| 13.4 2595 | 8 2.464
24 0.875 | 3 -2.536 4.5 1.504 | 8 2.464
1.2 0.182 | 3 -2.536 |||| 30.4 3414 | 9 3.464
3.5 1.253 | 4 -1.536 |||| 12.4 2.518 | 11 5.464
4.1 1411 | 4 -1.536 |||| 13.4 2.595 | 12 6.464
5.1 1.629 | 4 -1.536 ||| 26.2 3.266 | 12 6.464
5.7 1.740 | 5 -0.536 74 2.001 | 12 6.464

Table 4.1: Concentration of PCB in lake trouts as given in the data frame pcb.ex.

In Example the output of the ordinary glm function on this data set will be
presented (using family = “gaussian”, 1ink = “identity”). We will also examine this data
set using a user-defined link function. In Example we will demonstrate the effect of
a right tail modification using the glm function in R. The parameter for this modification
is derived in Example by using the glmProfile function.
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4.2 Binomial family

Example 4.2 (Beetle mortality)

Bliss (1935) (see p. 154) reports two data series about beetles being exposed to the harmful
gas C'Sy (= carbon disulphide, measured in
two given data series in eight observations.

mg

4 DATA SETS

) for five hours. Table [4.2| summarizes the

Yi n; l0910(052%> dose.cen Y; | Ny lOgl()(CSQ%) dose.cen

6159 1.6907 -0.1027 ||| 52 | 63 1.8113 0.0179
13 | 60 1.7242 -0.0692 ||| 53 | 59 1.8369 0.0435
18 | 62 1.7552 -0.0382 |||| 61 | 62 1.8610 0.0676
28 | 56 1.7842 -0.0092 ||| 60 | 60 1.8839 0.0905

Table 4.2: Mortality of beetles being exposed to C'S; as given in the data frame beetle.ex.

The number of beetles being found dead after the exposure are given by y; in the
first column. The second column gives the total number of insects n; being exposed to
the gas in this observation. The third column (i.e. log1o(C'S2")) contains the logarithm
(to the base ten) of the different concentrations of C'S;. Centering the covariate (i.e.
log10(C'S272)) yields to dose.cen as given in the fourth column.

1.0
|

0.8
|

0.6
|

0.4
|

logarithm of the PCB concentration (response)
ratio of dead and observed beetles (response)

0.2

-0.10 -0.05 0.00 0.05

centered age (covariate)

Figure 4.1: Plot of the covariate age.cen
against the response log.pch for the data
given in pcb.ex.

centered dose (covariate)

Figure 4.2: Plot of the covariate dose.cen
against the response ratio £ for the data
given in beetle.ex.

The number of dead beetles y; correspond to the binomial family. In each observation
(i € {1,...,8}) each single beetle can be either dead or still alive after the exposure.
Hence, the state of a single beetle corresponds to a Bernoulli distribution. Examining
the state of n; independent beetles yields to a binomial distribution. Considering the
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distribution of £ for each observation corresponds to a scaled binomial distribution.
Therefore, the response is ¥ i.e. the ratio of dead beetles and the number of observed

beetles in the specific observation (= # 0];ﬁdggedtlzzezfsoggeffjfgftzm Y. Figure shows the
dependence between the response ratio and the centered dose of C'S;. We can see a linear
interaction as indicated by the straight line.

In Example the output of the ordinary glm function on this data set will be
presented (using family = “binomial”, 1ink — “logit”) In addition we examine this data
set using a user-defined link function. In Example we will demonstrate the effect of
a left tail modification using the glm function in R. The parameter for this modification

is derived in Example [7.2] by using the glmProfile function.

Example 4.3 (Byssinosis among cotton workers)

The following data is about the medical conditions of cotton textile workers and was
reported by |[Higgins and Koch| (1977). The data was gathered in a large cross-sectional
occupational health survey. Higgins and Koch| (1977) focused on the relationship between
the complaints of the workers of byssinosis and the variables sex, race, length of employ-
ment (employment years), smoking habit (smoking) and the dustiness of the work area
(type of workplace). Following |Czado| (2007)), we can use the scheme given in Table |4.3|to
group our sample (5419 workers) by these factors. The incidence of byssinosis is reflected
by a binary response on whether or not the workers suffer from symptoms related to this
respiratory ailment.

H factor -1 = ‘ 0= ‘ 1= H
type of workplace | factor most dusty | less dusty least dusty
employment years | description | < 10 yrs. 10 - 19 yrs. > 19 yrs.
smoking nonsmoker smoker in last 5 yrs.
sex female male
race others white

H byssinosis ‘ ‘ ‘ no complaint ‘ complaint H

Table 4.3: Classification of cotton textile workers in health survey.

Czado| (2007) and Higgins and Koch| (1977)) identified three covariates of particular
importance. They are employment years, smoking and workplace. Thus, the data used in
our further analysis will not include the other covariates and can be found in Table

Employment | Smoking Workplace

years most dusty | less dusty | least dusty

< 10 yes 30/233 3/403 11/951

no 7/126 5/283 7/733

10 — 19 yes 16/67 2/94 3/320

no 3/20 1/51 1/160

> 19 yes 41/155 4/237 15/733

no 8/72 3/232 5/553

Table 4.4: Data gathered about cotton textile workers.
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Using the factor levels as described in Table and resorting the data set w.r.t. the
covariate workplace (abbreviated by work) yields to Table All in all, the data frame
bys.ex consist of 18 observations.

yi; | m; | work | smoking | employ yi | m; | work | smoking | employ
301233 -1 1 -1 1| 51 0 0 0

71126 | -1 0 -1 4| 237 0 1 1
16| 67| -1 1 0 31232 0 0 1

31 20| -1 0 0 11 | 951 1 1 -1
41 | 151 | -1 1 1 71733 1 0 -1

8| 72| -1 0 1 31320 1 1 0

3| 403 0 1 -1 1| 160 1 0 0

5| 283 0 0 -1 15 | 733 1 1 1

2| 94 0 1 0 5 | 553 1 0 1

Table 4.5: Incidence of byssinosis among cotton workers as given in bys. ex.

The first column (i.e. y;) contains the number of workers complaining about symp-
toms of byssinosis. The second column gives the total number n; of workers falling in
this group (i.e. Zil n; = 5419). The factor levels of the covariate workplace are con-
tained in the third column (i.e. work). The fourth column shows the factor levels of
the covariate smoking. In the last column (i.e. employ) the factor levels of the covariate
employment years are presented. Again we can see that the number of workers, suffering
from byssinosis (i.e. y;) corresponds to the binomial distribution. Therefore, considering
the distribution of £ yields to a scaled binomial distribution. Thus, we consider the ratio
y—" as the response in our model, i.e. the ratio of workers suffering from byssinosis and the

number of workers falling in this specific group (= “erkers Szjf; ’; Lt f’; ?Zngff;ﬁgfbf i group 1y,

In Example [5.3) the output of the ordinary glm function on this data set will be
presented (using family = “binomial”, 1link = “logit”). We will also examine this data
set using a user-defined link function. In Example [6.20| we will demonstrate the effect of
a left tail modification using the glm function in R. The parameter for this modification
can be found in the analysis of the bys.ex data frame in |(Czado| (2007)).

Example 4.4 (Rotifer suspension)

The following example can be found in Collett| (1999)(see p. 217). Two species of ro-
tifer were investigated: the Polyarthra major (denoted by species = 1) and the Keratella
cochlearis (denoted by species = 0). It was examined how many rotifers remained in
suspension (i.e. y;) after having introduced a certain number n; into 40 tubes contain-
ing different relative densities of Ficoll. Thus, the data frame rotifer.ex contains 40
observations (i.e. i € {1,...,40}) as we can see in Table [4.6]
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yi | mn; | density | species | den.cen y; | mn; | density | species | den.cen
11| 58 1.019 1 -2.565 13 | 161 1.019 0 -2.565
7| 86 1.020 1 -2.465 14 | 248 1.020 0 -2.465
10| 76 1.021 1 -2.365 30 | 234 1.021 0 -2.365
19| 83 1.030 1 -1.465 10 | 283 1.030 0 -1.465
9| 56 1.030 1 -1.465 14 | 129 1.030 0 -1.465
21| 73 1.030 1 -1.465 35 | 161 1.030 0 -1.465
13 29 1.031 1 -1.365 26 | 167 1.031 0 -1.365
34 | 44 1.040 1 -0.465 32 | 286 1.040 0 -0.465
10| 31 1.040 1 -0.465 22 | 117 1.040 0 -0.465
36 | 56 1.041 1 -0.365 23 | 162 1.041 0 -0.365
20 | 27 1.048 1 0.335 7 42 1.048 0 0.335
54 | 59 1.049 1 0.435 22| 48 1.049 0 0.435
20 | 22 1.050 1 0.535 9| 49 1.050 0 0.535
9| 14 1.050 1 0.535 34 | 160 1.050 0 0.535
14| 17 1.060 1 1.535 71| T4 1.060 0 1.535
10| 22 1.061 1 1.635 25 | 45 1.061 0 1.635
64 | 66 1.063 1 1.835 94 | 101 1.063 0 1.835
68 | 86 1.070 1 2.535 63| 68 1.070 0 2.535
488 | 492 1.070 1 2.535 |||| 178 | 190 1.070 0 2.535
88 | 89 1.070 1 2.535 |||| 154 | 154 1.070 0 2.535

Table 4.6: Data about rotifers in suspension as given in rotifer.ex.

The first column (i.e. y;) contains the number of rotifers remaining in suspension in
tube i (for ¢ € {1,...,40}). The number n; of rotifers, which were introduced in the
very same suspension are contained in the second column. The suspensions in the tubes
contained different relative densities of Ficoll as specified by density in the third column.
The column species gives information about what species of rotifer (1 = Polyarthra major,
0 = Keratella cochlearis) was examined. The centered density is given by den.cen in
the last column. As before we consider the response -, i.e. the ratio of the rotifers

T
remaining in suspension and the number of rotifers being introduced in this suspension
# number of rotifers remaining in suspension ) Again the distribution of % COI'I'GSpOIldS
7

(: # number of rotifers introduced in this suspension
to a scaled binomial distribution.

In Example the output of the ordinary glm function on this data set will be
presented (using family = “binomial”, 1ink = “probit”). In addition we examine this
data set using a user-defined link function. In Example we will demonstrate the
effect of a both tail modification using the glm function in R. The parameter for this

modification can be found in the analysis of the rotifer.ex data frame in (Czado (2007).

4.3 Poisson family

Example 4.5 (Coal mining fractures)

The following example is reported in [Myers| (1990) and consists of the observations made
from 44 coal mines in the coal fields of the Appalachian region in western Virginia. It
contains the number of miners being either injured or having a fracture denoted by ;.
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Moreover, we have information about the inner burden thickness (= INB, in ft., i.e. the
shortest distance between seam floor and lower seam), the amount of previously mined
seam in percent, i.e. the percentage of extraction (= EX) and the time in years that the
mine has been opened (= T'). The data set mining.ex is given in Table 1.7}

INB | EX T | INB.cen | EX.cen INB | EX T | INB.cen | EX.cen

s

50| 70| 1.0| -119.23 -5.93
230 | 65| 6.0 60.77 | -10.93
125 70| 1.0 -44.23 -2.93

] 65| 05 -94.23 | -10.93

701 65| 0.5 -99.23 | -10.93

65| 70| 3.0| -104.23 -5.93

65| 60| 1.0 | -104.23 | -15.93
350 | 60| 0.5 180.77 | -15.93
350 | 90 | 0.5 180.77 14.07
160 | 80| 0.0 -9.23 4.07
145 | 65| 10.0 -24.23 | -10.93
145 8| 0.0 -24.23 9.07
180 | 70| 2.0 10.77 -3.93

43| 80| 0.0 ] -126.23 4.07

42| 85| 12.0 | -127.23 9.07

42 8 | 0.0 | -127.23 9.07

45| 8| 0.0 | -124.23 9.07

83| 85| 10.0 -86.23 9.07
300 | 65 | 10.0 130.77 | -10.93
190 | 90| 6.0 20.77 14.07
1451 90 | 12.0 -24.23 14.07
510 | 80 | 10.0 340.77 4.07

65| 75| 5.0 ] -104.23 -0.93
470 | 90 | 9.0 300.77 14.07
300 | 80 | 9.0 130.77 4.07
275 90| 4.0 105.77 14.07
420 | 50 | 17.0 250.77 | -25.93

65| 80| 15.0 | -104.23 4.07

40 | 75| 15.0 | -129.23 -0.93
900 | 90 | 35.0 730.77 14.07

95| 88 20.0 -74.23 12.07

40 | 85 | 10.0 | -129.23 9.07
140 | 90| 7.0 -29.23 14.07
150 | 30| 5.0 -19.23 | -25.93

80| 60| 5.0 -89.23 | -15.93

80| 8| 5.0 -89.23 9.07
1451 65| 9.0 -24.23 | -10.93
100 | 65| 9.0 -69.23 | -10.93
150 | 80| 3.0 -19.23 4.07
150 | 80| 0.0 -19.23 4.07
210 | 75| 2.0 40.77 -0.93

11| 75| 0.0] -158.23 -0.93
100 | 65| 25.0 -69.23 | -10.93

o0 | 88 20.0 | -119.23 12.07

— o= OO OOl GUR U b = s OO N o~ oS
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Table 4.7: Data about injuries and fractures of miners as given in mining.ex.

The first column (i.e. y;) contains the number of miners being either injured or having
a fracture. The second column (i.e. INB) contains the data about the inner burden
thickness in this mine. The third column (i.e. EX) gives the percentage of extraction.
The third covariate (i.e. T) is the time that the mine has been opened and it is given in
the fourth column. In our further analysis we do only consider the covariates INB and
EX, since they have a linear influence, while the covariate T has no effect on our response
y;. Centered versions of these two covariates are given in INB.cen and EX.cen in the
last two columns. As explained in Subsection we can use the Poisson distribution
to model the number of accidents in a fixed time period. Hence, we choose a Poisson
regression model for our response y; (i.e. the number of injured or fractured miners).

In Example the output of the ordinary glm function on this data set will be
presented (using family = “poisson”, 1ink = “log”). This data set will also be examined
using a user-defined link function. In Example we will demonstrate the effect of a
right tail modification using the glm function in R. The parameter for this modification
is derived in Example by using the glmProfile function.
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4.4 Gamma family

Example 4.6 (Canadian automobile insurance)

The data presented in the following is about the Canadian automobile experience and
was analyzed in Bailey and Simon|(1960). It reflects the policy years 1957 and 1958 (as of
June 30, 1959) for private passenger automobile liability for non farmers (for all of Canada
excluding Saskatchewan). It includes the experience of almost all insurance companies
operating in Canada and was collected by the Statistical Agency (Statistical Department
of the Canadian Underwriters’ Association) acting under instructions from the Superin-
tendent of Insurance. Table [L.8 shows the factors and definitions of the variables Merit
and Class.

H Merit ‘ Description ‘ Original definition H
3 licensed and accident free three or more years A
2 licensed and accident free two years X
1 licensed and accident free one year Y
0 all others B

H Class \ Description ‘ H

1 pleasure, no male operator under 25

pleasure, non-principal male operator under 25
3 business use
4 unmarried owner or principal operator under 25
5) married owner or principal operator under 25

Table 4.8: Merit rating definition and class definitions.

The data frame given in Table contains 20 observations on groups of Canadian
private passenger automobile insurance holders. The insurance holders were classified
using a multiple classification system. The column Merit gives information about the
accidental behavior of several classes of car insurance holders. The merit rating plan is a
classification according to previous accidents and conviction records. The second column
Class represents the so-called class plan. It is a collective of the variables age, sex, use and
occupation. Also we are given information about the earned car years, which is contained
in the column Insured. Of further importance is the variable Premium containing the
earned premiums at present given in thousand dollars. The premiums were adjusted to
what they would have been if all the cars had been written at 1B rates. The fifth column
Claims presents the number of claims incurred as given in Bailey and Simon| (1959))(Table
1, p. 162). The last column Cost contains the losses incurred given in thousand dollars.
The data will be primarily grouped by the merit rating and then by the class plan as in
Bailey and Simon| (1960). We can use the gamma distribution to model data sets about
insurance claims (see Subsection [3.3.4). In our further work we will focus on the ratio
Clcaozfz -, which will be our response. We choose a gamma regression model with the inverse
link. Finally we include weights given by the covariate Claims (i.e. weights = “Claims”).
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Merit | Class | Insured | Premium | Claims | Cost
3 1 2757520 159108 | 217151 | 63191
3 2 130535 7175 | 14506 | 4598
3 3 247424 15663 | 31964 | 9589
3 4 156871 7694 | 22884 | 7964
3 5 64130 3241 6560 | 1752
2 1 130706 7910 | 13792 | 4055
2 2 7233 431 1001 380
2 3 15868 1080 2695 701
2 4 17707 888 3054 983
2 5 4039 209 487 114
1 1 163544 9862 | 19346 | 5552
1 2 9726 572 1430 439
1 3 20369 1382 3546 | 1011
1 4 21089 1052 3618 1281
1 5 4869 250 613 178
0 1 273944 17226 | 37730 | 11809
0 2 21504 1207 3421 1088
0 3 37666 2502 7565 | 2383
0 4 56730 2756 | 11345 | 3971
0 5 8601 461 1291 382

4 DATA SETS

Table 4.9: Data about Canadian automobile insurance claims contained in carinsur.ex.

In Example the output of the ordinary glm function on this data set will be pre-
sented (using family = “Gamma”, link = “inverse” and weights = “Claims”). We will
also examine this data set using a user-defined link function. In Example [6.41] we will
demonstrate the effect of a left tail modification using the glm function in R. The param-
eter for this modification is derived in Example by using the glmProfile function.
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5 Examples: the ordinary glm function in R

In this section we want to apply the R function glm (see help(glm)). It is already
implemented in R and requires the following input:

(i) formula: is an expression of the form: response ~ covariate; + - - - + covariatey,
and for every data set we have to decide which covariates we will include in our
model.

(ii) family: one of the families introduced in Section (e.g. family = “binomial”).

(iii) data: data set containing n rows of observations of both the response and the
covariates.

(iv) ... further things could be specified (e.g. weights, method (IWLS by default),
intercept (is of type logical), start (is a vector of starting values for the parameters
in the linear predictor), ...)

5.1 Gaussian family

Example 5.1 (PCB concentration in lake trouts)
Now we want to give an example of the Gaussian regressmn (see Subsection [3.3.1)). For
this we call the glm function with family = “gaussian” and the identity link. The data
set we will examine is pcb.ex as described in Example [4.1]

pcb_glm<- glm(formula = log.pcb~age.cen,
family = gaussian(link="identity"),
data = pcb.ex)

summary (pcb_glm)

##

## Call:

## glm(formula = log.pcb ~ age.cen, family = gaussian(link = "identity"),
#H data = pcb.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.1395 -0.3879 0.0957 0.4327 1.0508

##

## Coefficients:

#i# Estimate Std. Error t value Pr(>|t]|)

## (Intercept) 1.4659 0.1072 13.68 2.2e-13 *x*x*

## age.cen 0.2591 0.0308 8.41 6.8e-09 *xx

## ---

## Signif. codes: O 'x*x' 0.001 '#x' 0.01 'x' 0.06 '.' 0.1 ' ' 1
T

## (Dispersion parameter for gaussian family taken to be 0.3215)
#H
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## Null deviance: 31.120 on 27 degrees of freedom
## Residual deviance: 8.359 on 26 degrees of freedom
## AIC: 51.61

#4

## Number of Fisher Scoring iteratiomns: 2

We are especially interested in:

summary (pcb_glm)$deviance

## [1] 8.359

5.2 Binomial family

In Subsection [3.3.2] we introduced two common types of the binomial regression. For
both we want to give examples. In the following we will present the output of the glm
function on the three data sets presented in Section First we will exemplify the
logistic regression in two examples and afterwards we will present an example of the
probit regression.

5.2.1 Logistic regression

Example 5.2 (Beetle mortality)
Now we want to give the first example of the logistic regression (see Definition |3.35)). For
this we call the glm function with family = “binomial” and the logit link. The data set
we will examine is beetle.ex as described in Example |4

beetle_glm<- glm(formula = cbind(y, n-y)~ dose.cen,
family = binomial(link="logit"),
data = beetle.ex)

summary (beetle_glm)

##

## Call:

## glm(formula = cbind(y, n - y) ~ dose.cen,
## family = binomial(link = "logit"),

## data = beetle.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max
## -1.594 -0.394 0.833 1.259 1.594
##

## Coefficients:

it Estimate Std. Error z value Pr(>|zl)

## (Intercept) 0.744 0.138 5.4 6.8e-08 *x*x
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## dose.cen 34.270 2.912 11.8 < 2e-16 ***

## -—-

## Signif. codes: 0O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 284.202 on 7 degrees of freedom

## Residual deviance: 11.232 on 6 degrees of freedom

## AIC: 41.43

i

## Number of Fisher Scoring iterations: 4

We are especially interested in:

summary (beetle_glm)$deviance

## [1]1 11.23

Example 5.3 (Byssinosis among cotton workers)
We illustrate the logistic regression (see Definition |3.35) with a second example. Again
we call the glm function with family = “binomial” and the logit link. The data set we
will examine is bys.ex as described in Example £.3]

bys_glm<- glm(formula = cbind(y, n-y)~ workplacet+smoking+employment,
family = binomial(link="logit"),
data = bys.ex)

summary (bys_glm)

##

## Call:

## glm(formula = cbind(y, n - y) ~ workplace + smoking + employment,
#H family = binomial(link = "logit"), data = bys.ex)
i

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.336 -0.482 0.162 1.160 2.105

#i

## Coefficients:

fH Estimate Std. Error z value Pr(>|z|)

## (Intercept) -3.7626 0.1652 -22.78 < 2e-16 *x**
## workplace -1.4657 0.1058 -13.86 < 2e-16 *xx
## smoking 0.6778 0.1887 3.59 0.00033 *xx
## employment 0.3331 0.0886 3.76 0.00017 *xx
## ---

## Signif. codes: O 'x*x' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 290.739 on 17 degrees of freedom
## Residual deviance: 40.774 on 14 degrees of freedom
## AIC: 112.1

##

## Number of Fisher Scoring iterations: 5

We are especially interested in:

summary (bys_glm)$deviance

## [1] 40.77

5.2.2 Probit regression

Example 5.4{ (Rqgtifer suspension)

In Subsection |3.3.2| we defined another important regression model. This was the probit
regression (see Definition [3.36)). In the following example we call the glm function with
family = “binomial” and the probit link examining the data set rotifer.ex as described

in Example [1.4]

rotifer_glm<- glm(formula = cbind(y, n-y) species
+density.cen
+species*density.cen,
family = binomial(link="probit"),
data = rotifer.ex)
summary (rotifer_glm)

i

## Call:

## glm(formula = cbind(y, n - y) ~ species + density.cen + species *
## density.cen, family = binomial(link = "probit"), data = rotifer.ex)
##

## Deviance Residuals:

i Min 1Q Median 3Q Max

## -6.836 -2.319 0.369 2.412 6.423

##

## Coefficients:

i Estimate Std. Error z value Pr(>|zl|)

## (Intercept) -0.3939 0.0297 -13.26 <2e-16 *xx

## species 0.7379 0.0531 13.90 <2e-16 *xx

## density.cen 0.6085 0.0195 31.13 <2e-16 *x*x*

## species:density.cen -0.0135 0.0315 -0.43 0.67
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#it
#it
#i#
i
i
#it
#Hit
##
i
i

Signif. codes: 0O 'xxx' 0.001 '*x'

0.01

I*l
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0.05'." 0.1 " "1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3180.99 on 39 degrees of freedom
Residual deviance: 471.25 on 36 degrees of freedom

ATIC: 633.8

Number of Fisher Scoring iterations: 6

We are especially interested in:

summary (rotifer_glm)$deviance

##

[1] 471.3

5.3 Poisson family

Example 5.5 (Coal mining fractures)
Now we want to give an example of the Poisson regression (see Subsection [3.3.3). For this
we call the glm function with family = “poisson” and the log link. The data set we will
analyze is mining.ex as described in Example [£.5]

mining_glm<- glm(formula = y~inb.centextrp.cen,
family = poisson(link="log"),

data = mining.ex)

summary (mining_glm)

i
i
##
#it
#it
#i
i
i
#it
#it
#it
i
i
it
#it
#i

Call:

glm(formula = y ~ inb.cen + extrp.cen, family = poisson(link = "log"),

data = mining.ex)

Deviance Residuals:

Min 1Q Median 3Q
-1.926 -0.948 -0.188 0.534 2.
Coefficients:

Estimate Std. Error z
(Intercept) 0.599236 0.123749

inb.cen -0.001708 0.000747
extrp.cen 0.058420 0.011811

Signif. codes: 0 'xxx' 0.001 '*x!

Max
092

value
4.84
-2.29
4.95

0.01

Pr(>|zl)
1.3e-06 *xxx

0.022 *

7.6e-07 *xx

I*l

0.05 '." 0.1 " "1
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#i
##
#i#
i
i
##
##
i
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(Dispersion parameter for poisson family taken to be 1)
Null deviance: 74.984 on 43 degrees of freedom
Residual deviance: 42.094 on 41 degrees of freedom

AIC: 144 .4

Number of Fisher Scoring iterations: 5

We are especially interested in:

summary (mining_glm)$deviance

i

[1] 42.09

5.4 Gamma family

Example 5.6 (Canadian automobile insurance)

The last example we will present in this chapter is for the gamma regression (see Subsec-
tion [3.3.4). For this we call the glm function with family = “Gamma” and the inverse
link. We will examine the data set carinsur.ex as described in Example 4.6

carinsur_glm<-glm(formula

Cost/Claims~Merit+Class,
weights = Claims,

family = Gamma(link="inverse"),
data = carinsur.ex)

summary (carinsur_glm)

i
#i#
#it
#it
i
i
##
#it
#it
#i#
i
##
#it
#it
##
i
i

Call:

glm(formula = Cost/Claims ~ Merit + Class,
family = Gamma(link = "inverse"),
data = carinsur.ex, weights = Claims)

Deviance Residuals:

Min 1Q Median 3Q Max
-6.012 -1.889 -0.335 2.192 6.388
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept)  3.2466 0.0510 63.72 < 2e-16 *xx
Meritil 0.2153 0.0888 2.42 0.0321 *
Merit?2 0.2237 0.0994 2.25 0.0440 +*
Merit3 0.1773 0.0534 3.32 0.0061 *xx
Class2 -0.2678 0.0859 -3.12 0.0089 *xx



5.4 Gamma family

#i
##
#i#
i
i
#i#
#
i
i
i
#i
##
i

Class3 -0.0539 0.0635 -0.85 0.4122

Class4 -0.4984 0.0594 -8.39 2.3e-06 xxx
Classb 0.2874 0.1486 1.93 0.0770 .
Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
(Dispersion parameter for Gamma family taken to be 14.15)

Null deviance: 1556.01 on 19 degrees of freedom
Residual deviance: 167.43 on 12 degrees of freedom
ATC: -2972929

Number of Fisher Scoring iterations: 4

We are especially interested in:

summary (carinsur_glm)$deviance

#i#

[1] 167.4

1

ol
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6 Generalized linear models with parametric link

There are many cases in which we obtain a misspecification of the link function. The
reason is simple: we have to choose the link function before having sufficient information
about the choice of the link. Thus, we would like to describe a way to improve the
goodness of fit of the GLMs by reducing the deviance (see Section [3.4). Tt will turn
out, that one elegant way to improve the models is to allow link functions coming from
the parametric link families specified in Czado (2007). This advantageous parametric
class of link transformations was developed by [Czado| (1992). The general h(-) - power
transformation functions are the key elements for modifying the tails of a graph. We
will introduce them in Section We then will be able to define the parametric link
families in Section [6.2] Further it will be demonstrated, how the use of a parametric link
reduces the deviance of the GLMs presented in Chapter o} In Section [6.3| we will describe
the glmProfile function. It helps to find the optimal parameter for the parametric link
functions and thus it will be applied on the data sets in Chapter [7]

6.1 General h(-) - power transformations

In the following we want to investigate the behavior of the h(-) - power transformation
functions for specific values of 1. Therefore we have to pass the function a start value
no € R and either ¢, or ¢ € R for a single tail modification or the values of the vector
1 € R? for a both tail modification. For a left tail modification every point < 7, will be
modified whereas for a right tail modification every point > 7 is. A both tail modification
modifies both tails (i.e. all points < 7y and > 7y are modified).

Remark 6.1 (Remarks on the choice of the parameter )
e by setting the parameters to 1 we obtain no modification (i.e. a straight line).

e if we set one parameter to 1 in the both tail modification, we get a single tail
modification (e.g. ¥ = (1,15) modifies the left tail).

e in a right tail modification a parameter ¢¥; < 1 decreases the slope, while setting
Y1 > 1 increases it. In the left tail modification it is the other way round for 5.

e in the cases ¥; V ¢y = 0 we had to look at e.g.:

lim (n—mno+ 1)¢1 -1 L’ Hospital lim In(n—mno+1)(n—mno+ 1)¢1
Y10 (20 $1-0 1

lim (n —1o+1)" =1In(n — 10 +1)

P1—0

N J/
-

=1

The other cases can be shown analogously.

e for numerical reasons, we had to weaken the statement 1)1 Viby = 0 to 11|V [¢hs] < &,
where in our case the tiny number ¢ — 1e-14 = 11074
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Definition 6.2 (Right tail modification)
mo+1In(n —mno+1) if n=mny and ¢, =0

— Y1 .
T (1,9 = 1) = ¢ o + EEUEL i > g and 4y # 0
n otherwise (i.e. if n < np)

Right tail modification

4 —| valuesof y; | [ g

-0 3 / <l. //
e 2B ol 2
........ 2 / R

e A | o

0.5

2_
£ e S (e
Qo
e
1_
O_
_1_
| | | | | |
-1 0 1 2 3 4
n

Figure 6.1: Right tail modification for different values of ¢y as implemented in the function
hpsil (1o = 0 as indicated by the dotted vertical line).
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o4

Definition 6.3 (Left tail modification)

n if n = no

no—In(—n+mny+1) if n <nyand 1y =0
otherwise (i.e. if n < ny and 9 # 0)

hno (77’ ¢ = ¢2) = (_ + _’_1)1/’2—1
-

Left tail modification
1 —
0 -
_l e T -
(7‘)“ )
Q- ..... B
c .
values of (s,
N _/I. // ______ s
.," //I I
[ s
l_’ I/ """"" 0
o 0
_3 - .l.l III o 1
/ - 15
N 2
; (/ 2.
_4 1 | Il . 3
- L
I ! I | I I
-4 3 L B O 1
n

Figure 6.2: Left tail modification for different values of 15 as implemented in the function

hpsi2 (1o = 0 as indicated by the dotted vertical line).
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Definition 6.4 (Both tail modification)

m+In(n—n+1) ifn>mnandyyy =0

(n=mo+1)¥1-1 .
o (0, = (1,72)) = M+ = }fnznoandqpﬁéo
Ve ; no—In(—n+mn+1) ifn<nyand ¢ =0

Ny — HH"%% otherwise (i.e. if n < ng and 19 # 0)

Both tail modification

: [
4 —|values of , ; o
2
2 0- ;
= :
-2
values of ),
i -—- 3
[} .
;P : — 1
-4 - ; /I ''''' -3
| | | | |
-4 -2 0 2 4

Figure 6.3: Both tail modification for different values of 1) as implemented in the function
hpsil2. Arbitrary combinations of the parameters ¢); and 15 can be made to transform
the tail. Again 79 = 0 as indicated by the dotted vertical line.
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Remark 6.5 (More about the general h(-) - power transformations)
The implementation of the single hpsi functions can be found in Section |A.2| Further
we present related mathematical quantities including the domains of the hpsi functions,
the inverses, the partial derivatives w.r.t. 1 and the partial derivatives w.r.t. @. Le. we
calculated the derivative w.r.t. 1; in the case of a right tail modification (w.r.t. 1, in
the case of a left tail modification) and for the both tail modification we calculated both
partial derivatives w.r.t. ; and v¢,. In addition we present the limits as |n| — oo (i.e.
limy,;| o) for the single tail modifications.

6.2 Parametric link families

Now we want to improve the GLMs presented in Chapter [5| using user-defined link func-
tions. Therefore, we modify the link functions introduced in Section [3.3] The topic of this
chapter will be how such link functions can be implemented in R and what specific link
functions we will use for the different families. We will proceed with the implementation
of the methods and functions described in |(Czado (2007)), modifying them slightly where
it is needed. The following table gives an overview of parametric link families using the
general h(-) - power transformations we have introduced in Section If we take a link
function from these parametric link families, we speak of a tail modified GLM since we
use a tail modified link function. We restricted ourselves to the most common families in
GLMs and specified the allowable modifications as it can be seen in Table

Error Linkinv. Link family Allow.
distr. F(n) F={F(,¢)|¢v eV} modif.
Normal | F(n) =n F(n, ) = hy(n, ) all

exp{ by (n,40) }

Scaled F all

(n) (n

( ) 1+exp{n} (7],1/)) W
binomial | F(n) = ®(n) F(n,4) = ®(hy,(n,9)) all
Poisson | F(n) = exp{n} | F'(n,¥) = exp {hny(n, %)} | right
Gamma | F(n) = 71] F(n,¢) = T (7 m/} left

Table 6.1: Overview of the link families using ny-standardized tail modifications.

To implement the parametric link families we have to create user-defined link functions.
One way to define a user-defined link function in R is to specify all of the following
components: linkfun, linkinv, mu.eta, valideta and name in an object of class “link-
glm” (see also help(make.link) and Section [3.3).

6.2.1 Gaussian family with tail modified identity link

In the following we want to derive the tail modified identity link function for all possible
modifications (i.e. “right”, “left” and “both”).

Remark 6.6 (Gaussian family with identity link)
In Subsection [3.3.1| we defined the ordinary identity link function through the following
specifications:

(i) linkfun: n=g(u) =p
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(i) linkinv: p=g~'(n) = F(n) =7

(ili) mu.eta: ‘;—’;(F(n)) =1

(iv) valideta: 1g,cry — TRUE

We can define the tail modified Gaussian regression by modifying the linkinverse in
the ordinary Gaussian regression as follows.

Definition 6.7 (Tail modified Gaussian regression)

Let hy,(n,%) be a tail modification as defined in Section (see Definitions
and . Then, the tail modified Gaussian regression has an inverse link function of the
following form:

F(n,9) = hno (0, %) (6.1)

Definition 6.8 (Tail modified identity link)
Using Equation (6.1), we can define the tail modified identity link through the following
specifications:

(i) linkfun: g(p,v):
We had n = g(p) = p for the identity link function. Hence, now we have:

(ii) linkinv: F(n, ) = hy(n,9)

(ili) mu.eta: g—j; = %F(n,v,b):

0 0
a—nF(U>¢) = an (o (0, 7))

(iv) valideta: TRUE, if n is in the domain of F(n, ).

(v) name: “psilGAUSS” for the right tail modification, “psi2GAUSS” for the left tail
modification and “psil2GAUSS” for the both tail modification.

Remark 6.9

If we use a right tail modification h,,(n, % = 1) as defined in Definition 6.2] (a left tail
modification h,, (7,19 = 12) as defined in Definition for h,,(n,v), we speak of a
right tail modified Gaussian regression (left tail modified Gaussian regression). If we use
Py (n,% = (1,12)) as defined in Definition for hy,(n,v), we speak of a both tail
modified Gaussian regression.
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Example 6.10 (Right tail modified Gaussian regression)
Let the right tail modification h,,(n,% = 1) be given as in Definition , then the
inverse of it is given as calculated in Equation and the partial derivative w.r.t. 7 is
given as calculated in Equation . We determine the values, which are in the domain
of F(n,1). As we derived above we have:

F(n,9) = hno (0, %)

Therefore, the domain of F(n,) is the domain of the corresponding hpsi function

hyo (1, 1) as given in Equation (A.1) (and in Equations and [A.7). We derived the
following implementation of the right tail modified identity link called “psilGAUSS”.

psilGAUSS<-function(psil = 1, etal = 0)

{linkfun <- function(mu) {hpsilINV(psil, mu, etal)}
linkinv <- function(eta){hpsil(psil, eta, etal)?}
mu.eta <- function(eta) {hpsilDERIV(psil, eta, etal)}
valideta<-function(eta) {h <- 1:length(eta)
for (i in 1:length(eta) ) {

if (is.finite(linkinv(etalil))) {h[i] <- TRUE}
else {h[i] <- FALSE}
+
h
}
link <- paste("psilGAUSS(", psil, " , " , eta0l, ")")
structure(list (linkfun = linkfun,
linkinv = linkinv,
mu.eta = mu.eta,
valideta = valideta,
name = link),
class = "link-glm")

Example 6.11 (PCB concentration in lake trouts)

Now we present the output of a right tail modified Gaussian regression with two different
parameters. As in Example our analysis is based on the data frame pcb.ex (see Ex-
ample . The first parameter is chosen in a way that decreases the deviance drastically
(for further information see Example [7.1]). For the other parameter we choose the value
¥y = 1. This yields to an ordinary GLM with family = “gaussian” and link = “identity”.

pcb_glm_right<- glm(formula = log.pcb~age.cen,
family = gaussian(1link=psilGAUSS(psil=0.18,eta0=0)),
data = pcb.ex)

summary (pcb_glm_right)

##
## Call:
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## glm(formula = log.pcb ™ age.cen,

## family = gaussian(link = psilGAUSS(psil = 0.18, etald = 0)),
#H data = pcb.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.798 -0.334 0.020 0.348 1.034

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.477 0.343 10.1 1.6e-10 **x*

## age.cen 0.801 0.088 9.1 1.4e-09 **x*

## --—-

## Signif. codes: O 'x*x' 0.001 '#x' 0.01 'x' 0.06 '.' 0.1 ' ' 1
##

## (Dispersion parameter for gaussian family taken to be 0.2433)
##

## Null deviance: 31.1196 on 27 degrees of freedom

## Residual deviance: 6.3253 on 26 degrees of freedom

## AIC: 43.81

##

## Number of Fisher Scoring iterations: 5

summary (pcb_glm_right) $§deviance

## [1] 6.325

Remark 6.12 (No transformation for ¢; = 1)

pcb_glm_right2<- glm(formula = log.pcb~age.cen,
family = gaussian(1link=psil1GAUSS(psil=1,eta0=0)),
data = pcb.ex)

summary (pcb_glm_right2)$deviance

## [1] 8.359

Setting the link parameter ¢ to 1 yields to no transformation (see Remark [6.1]).
Hence, the summary of pcb_glm_right?2 yields to the same output as in Example In
particular, the deviance is the same, as can be seen above.
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6.2.2 Binomial family with tail modified logit link
In the following we want to derive the tail modified logit link function for all possible
modifications (i.e. “right”, “left” and “both”).

Remark 6.13|(Binomial family with logit link)
In Subsection |3.3.2| we defined the ordinary logit link function through the following
specifications:

(i) linkfun: n=g(u) =In (ﬁ)

(i) linkinv: p=g~'(n) = F(n) = el

(iii) mu.eta: P (F(n) = gt

(iv) valideta: 1g,cry = TRUE

We can define the tail modified logistic regression by modifying the linkinverse in the
ordinary logistic regression as follows.

Definition 6.14 (Tail modified logistic regression)
Let hy,(n,1) be a tail modification as defined in Section [6.1| (see Definitions (6.2 (6.3
and . Then, the tail modified logistic regression has an inverse link function of the

following form:
exp {h, (1, )}

PO %) = T They (0, 9)) (62)

Definition 6.15 (Tail modified logit link)
Using Equation (6.2) we can define the tail modified logit link through the following
specifications:

(i) linkfun: g(p,v):

We had n = g(u) =1In (ﬁ) for the logit link function. Hence, now we have:

) =t ()

I —p

& = (hy (%)) (m (ﬁ))

= (1, 1) = (hay(n.9)) " (ln (L))

I—p

(i) linkinv: F(n,):
B exXp {hno (777 ’lrb)}
Fov) =1 {hno(n, )}

Lo {hnm¥)} 1
T exp (o (0.9)] 1+ exp (o (7.9)}

~~
=1

1
= T T e (1 9))
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(ili) mu.eta: g—’; = %F(n,w):

9 _3 eXp{hno(nvw)}
—F(n,¢) = an (1 + exp {hno(”’¢)}>

on
(2 s (7,9) ) 50 Lo (1, )} (1 xp LI (m, 9)})
(15 exb (o (1, $)}
xp (I (1,9} (251 1, ) ) €D Ly (1,%9))
(15 exp (o, (1, $)}?
(g (1,0) ) exp { oy ()}

g ~ (opte ) Fl) (= Pl

(iv) valideta: TRUE, if n is in the domain of F(n, ).

(v) name: “psilLOGIT” for the right tail modification, “psi2LOGIT” for the left tail
modification and “psil2LOGIT” for the both tail modification.

Remark 6.16

If we use a right tail modification h,,(n,% = 1) as defined in Definition (a left
tail modification h,, (1,1 = 1)) as defined in Definition for hy,(n,1), we speak of
a right tail modified logistic regression (left tail modified logistic regression). If we use
hayo(n,% = (11,12)) as defined in Definition for hy,(n,1), we speak of a both tail

modified logistic regression.

Example 6.17 (Left tail modified logistic regression)

Let the left tail modification h,,(n, 1 = 1») be given as in Definition , then the inverse
of it is given as calculated in Equation and the partial derivative w.r.t. 7 is given
as calculated in Equation . We determine the values, which are in the domain of
F(n,1). As we derived above we have:

1
1t oxp (A (1 9)}

The domain of exp{-} is the real line and exp{-} is non-negative. Therefore, n has to be in
the domain of the hpsi functions h,,(n,) as given in Equation (A.4)) (and in Equations
and . We derived the following implementation of the left tail modified logit link
called “psi2LOGIT”.

F(n,) =1

psi2L0GIT<-function(psi2 = 1, etal = 0)

{linkfun <- function(mu) hpsi2INV(psi2, log(mu/(1 - mu)), etal)
linkinv <- function(eta) 1 - (1/(1 + exp(hpsi2(psi2, eta, eta0))))
mu.eta <- function(eta)q

(hpsi2DERIV(psi2, eta, etal)
*(1 - (1/(1 + exp(hpsi2(psi2, eta, eta0))))))/
(1 + exp(hpsi2(psi2, eta, etald)))
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+
valideta<-function(eta){h <- 1:length(eta)
for (i in 1:length(eta) ) {
if (is.finite(linkinv(etalil))) {h[i] <- TRUE}
else {h[i] <- FALSE}
+
h
}
link <- paste("psi2LOGIT(", psi2, " , " , eta0l, ")")
structure(list(linkfun = linkfun,
linkinv = linkinv,
mu.eta = mu.eta,
valideta = valideta,
name = link),
class = "link-glm")

Example 6.18 (Beetle mortality)

Now we present the output of a left tail modified logistic regression with two different
parameters. As in Example our analysis is based on the data frame beetle.ex (see
Example . The first parameter is chosen in a way that decreases the deviance dras-
tically (for further information see Example [7.2]). For the other parameter we choose
19 = 1. This yields to an ordinary GLM with family = “binomial” and 1ink = “logit”.

beetle_glm_left<- glm(formula = cbind(y, n-y)~dose.cen,
family = binomial(1ink=psi2LOGIT(psi2=0.16,eta0=0)),
data = beetle.ex)

summary (beetle_glm_left)

##

## Call:

## glm(formula = cbind(y, n - y) ~ dose.cen,

## family = binomial(link = psi2L0GIT(psi2 = 0.16, etald = 0)),
#i# data = beetle.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.967 -0.323 0.198 0.569 0.945

#i#

## Coefficients:

it Estimate Std. Error z value Pr(>|zl)

## (Intercept) 0.514 0.173 2.97 0.0029 *xx
## dose.cen 48 .454 5.457 8.88 <2e-16 *xx
##t ---

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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##
## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 284.2024 on 7 degrees of freedom
## Residual deviance: 3.0445 on 6 degrees of freedom
## AIC: 33.24

##

## Number of Fisher Scoring iterations: 4
summary (beetle_glm_left)$deviance

## [1] 3.045

Remark 6.19 (No transformation for ¢, = 1)

beetle_glm_left2<- glm(formula = cbind(y, n-y)~dose.cen,
family = binomial (1ink=psi2LOGIT(psi2=1,eta0=0)),
data = beetle.ex)

summary (beetle_glm_left2)$deviance

## [1] 11.23

Setting the link parameter ¢ to 1 yields to no transformation (see Remark [6.1]).
Hence, the summary of beetle_glm_left2 yields to the same output as in Example [5.2]
In particular, the deviance is the same, as can be seen above.

Example 6.20 (Byssinosis among cotton workers)

Again we present the output of a left tail modified logistic regression with two different
parameters. As in Example our analysis is based on the data frame bys.ex (see Ex-
ample . The first parameter is chosen in a way that decreases the deviance drastically

(for further information see (2007) (pp. 15-18)). For the other parameter we choose
19 = 1, which yields to an ordinary GLM with family = “binomial” and 1ink = “logit”.

bys_glm_left<- glm(formula = cbind(y, n-y) “workplacet+smoking+employment,
family = binomial (1ink=psi2LOGIT(psi2=-1.9626,
eta0=-3.912)),
start = ¢c(-3.8, -1.5, 0.6, 0.3),
data = bys.ex)
summary (bys_glm_left)

i

## Call:

## glm(formula = cbind(y, n - y) ~ workplace + smoking + employment,

## family = binomial(link = psi2LOGIT(psi2 = -1.9626, etal = -3.912)),

#it data = bys.ex, start = c(-3.8, -1.5, 0.6, 0.3))
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##

## Deviance Residuals:

#it Min 1Q Median 3Q Max

## -1.133 -0.462 -0.103 0.492 1.854

#it

## Coefficients:

#it Estimate Std. Error z value Pr(>|zl)

## (Intercept) -5.506 0.826 -6.66 2.7e-11 **x
## workplace -3.139 0.789 -3.98 7.0e-05 #*%*x*
## smoking 0.966 0.275 3.51 0.00045 *x*x
## employment 0.446 0.117 3.80 0.00015 *x*x*
##H --—-

## Signif. codes: O 'x*xx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#it

## (Dispersion parameter for binomial family taken to be 1)
#

## Null deviance: 290.7386 on 17 degrees of freedom
## Residual deviance: 9.2599 on 14 degrees of freedom
## AIC: 80.63

#H

## Number of Fisher Scoring iteratioms: 7

summary (bys_glm_left)$deviance

## [1] 9.26

Remark 6.21 (No transformation for ¢, = 1)
bys_glm_left2<- glm(formula = cbind(y, n-y) workplace+smoking+employment,
family = binomial (1ink=psi2LOGIT(psi2=1,
eta0=-3.912)),
start = ¢(-3.8, -1.5, 0.6, 0.3),
data = bys.ex)
summary (bys_glm_left2)$deviance

## [1]1 40.77

Setting the link parameter ¢ to 1 yields to no transformation (see Remark [6.1]).
Hence, the summary of bys_glm_left2 yields to the same output as in Example [5.3] In
particular, the deviance is the same, as can be seen above.
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6.2.3 Binomial family with tail modified probit link

In the following we want to derive the tail modified probit link function for all possible
modifications (i.e. “right”, “left” and “both”).

Remark 6.22 (Binomial family with probit link)
In Subsection [3.3.2| we defined the ordinary probit link function through the following
specifications:

(1 1inkfun: n = g(lu) _ qnorm(u) quantile:function (I)_l(,u)

)
(i) linkinv: p =g~ (n) = F(n) = pnorm(n) = ®(n)
(iii) mu.eta: 9 (F(n)) = dnorm(n) = p(n)

)

(iv) valideta: 1y,cry = TRUE

We can define the tail modified probit regression by modifying the linkinverse in the
ordinary probit regression as follows.

Definition 6.23 (Tail modified probit regression)
Let h,,(n,7) be a tail modification as defined in Section [6.1| (see Definitions [6.2} [6.3| and

[6.4). Then, the tail modified probit regression has an inverse link function of the following
form:

F(n,4) = ®(hpy(n, %)) (6-3)

Definition 6.24 (Tail modified probit link)
Using Equation (6.3) we can define the tail modified probit link through the following
specifications:

(i) linkfun: g(u,):
We had n = g(u) = gnorm(u) = ®~'(u) for the probit link function. Hence, now

we have:

h7]0 (7]7 ’lp) 1(:“’)
0 = (hyy(n, )" (@7 (1))
= g(p,P) = (hﬁo( - -

(i) linkinv: F'(n,%) = ®(hy,(n, 1))

(ili) mu.eta: g—‘; = %F(n,@b):

o 0
a_nF(nv ¢) = 8_77 (q><h770(777 ¢))

= (gt (1:9)) il )

(iv) valideta: TRUE, if n is in the domain of F'(n, ).



66 6 GENERALIZED LINEAR MODELS WITH PARAMETRIC LINK

(v) name: “psilPROBIT” for the right tail modification, “psi2PROBIT” for the left tail
modification and “psil2PROBIT” for the both tail modification.

Remark 6.25

If we use a right tail modification h,,(n,% = 1) as defined in Definition (a left
tail modification h,,(n,% = 1)2) as defined in Definition for h,,(n,1), we speak
of a right tail modified probit regression (left tail modified probit regression). If we use
Py (n,% = (11,12)) as defined in Definition for hy,(n,1), we speak of a both tail
modified probit regression.

Example 6.26 (Both tail modified probit regression)

Let the both tail modification h,,(n, ¥ = (11,12)) be given as in Definition |6.4) then the
inverse of it is given as calculated in Equation and the partial derivative w.r.t. 7 is
given as calculated in Equation . We determine the values, which are in the domain
of F(n,1). As we derived above we have:

F(n,4) = ®(hyy(n, %))

The domain of ®(-) is the real line. Therefore, n has to be in the domain of the hpsi

functions Ay, (1, ) as given in Equation (A.7) (and in Equations[A.1Jand[A.4). We derived
the following implementation of the both tail modified probit link called “psi12PROBIT”.

psil2PROBIT<-function(psil = 1, psi2 = 1, eta0 = 0)

{linkfun <- function(mu) {hpsil2INV(psil, psi2, gnorm(mu), etal)}
linkinv <- function(eta){pnorm(hpsii2(psil, psi2, eta, eta0))}
mu.eta <- function(eta) {hpsil2DERIV(psil, psi2, eta, etal)x*

dnorm(hpsil2(psil, psi2, eta, eta0))}
valideta<-function(eta) {h <- 1:length(eta)
for (i in 1:length(eta) ) {
if (is.finite(linkinv(etal[il))) {h[i] <- TRUE}
else {h[i] <- FALSE}

}
h
}
link <- paste("psil2PROBIT(", psil, "," , psi2, " , " , etal, ")")
structure(list (linkfun = linkfun,

linkinv linkinv,
mu.eta = mu.eta,
valideta = valideta,
name = link),

class = "link-glm")
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Example 6.27 (Rotifer suspension)

Now we present the output of a both tail modified probit regression with two different
parameters. As in Example [5.4] our analysis is based on the data frame rotifer.ex
(see Example . The first parameter is chosen in a way that decreases the deviance
drastically (for further information see (2007) (pp. 18-22)). The other parameter
vector is chosen to be (1,1) (i.e. ¥ = (1,1)), which yields to an ordinary GLM as in
Example with family = “binomial” and 1ink = “probit” (see also Remark .

rotifer_glm_both<- glm(formula = cbind(y, n-y) “species
+density.cen
+species*density.cen,
family = binomial (1ink=psi12PROBIT(psil=0,
psi2=-0.5,
eta0=0)),
data = rotifer.ex)
summary (rotifer_glm_both)

##
## Call:
## glm(formula = cbind(y, n - y) ~ species + density.cen + species *

#it density.cen, family = binomial(link = psil2PROBIT(psil = O,
## psi2 = -0.5, etald = 0)), data = rotifer.ex)

it

## Deviance Residuals:

#it Min 1Q Median 3Q Max

## -5.896 -1.392 -0.065 1.740 4.450

#it

## Coefficients:

it Estimate Std. Error z value Pr(>|zl)

## (Intercept) -2.606 0.264 -9.87 < 2e-16 #**x*
## species 3.510 0.290 12.09 < 2e-16 **x*
## density.cen 2.729 0.197 13.82 < 2e-16 **x*
## species:density.cen  -1.230 0.232 -5.29 1.2e-07 *xx
## —--

## Signif. codes: O '**x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#it

## (Dispersion parameter for binomial family taken to be 1)
#

## Null deviance: 3180.99 on 39 degrees of freedom
## Residual deviance: 253.58 on 36 degrees of freedom
## AIC: 416.1

#H

## Number of Fisher Scoring iterations: 7

summary(rotifer_glm_both)$deviance

## [1] 253.6
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Remark 6.28 (No transformation for ¢ = (1, 1))
rotifer_glm_both2<- glm(formula = cbind(y, n-y) species
+density.cen
+species*density.cen,
family = binomial (1ink=psi12PROBIT(psil=1,
psi2=1,
eta0=0)),
data = rotifer.ex)
summary (rotifer_glm_both2)$deviance

## [1] 471.3

Setting the link parameter % to (1,1) yields to no transformation (see Remark [6.1)).
Hence, the summary of rotifer_glm_both2 yields to the same output as in Example
In particular, the deviance is the same, as can be seen above.

6.2.4 Poisson family with right tail modified log link

In the following we want to derive the right tail modified log link function. In a Poisson
regression model with log link no modification other than the right tail modification is
allowed.

Remark 6.29 (Podisson family with log link)
In Subsection |3.3.3| we defined the ordinary log link function through the following spec-
ifications:

(i) linkfun: n = g(p) = In(p)

(i) linkinv: p=g~'(n) = F(n) = exp{n}
(ili) mu.eta: ‘;—’;(F(n)) = exp{n}

)

(iv) valideta: 1y,cry = TRUE

We can define the right tail modified Poisson regression by modifying the linkinverse
in the ordinary Poisson regression as follows.

Definition 6.30 (Right tail modified Poisson regression)
Let Ay, (1,4 = 1) be the right tail modification as defined in Definition [6.2, Then, the
right tail modified Poisson regression has an inverse link function of the following form:

F(n,v = 1) = exp {hy, (0, = ¢1)} (6.4)
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Definition 6.31 (Right tail modified log link)
Using Equation (6.4) we can define the right tail modified log link through the following
specifications:

(i) linkfun: g(u, ¥ = )
We had n = g(u) = In(u) for the log link function. Hence, now we have:

e (0,0 = 91) = In(p)

&= (hy(n, 9 =1))"" (In(u))

= g(1, 1 = 1) = (hny (0,9 = ¢1)) ™" (In(p))
(ii) linkinv: F(n,% = ¢1) = exp {hy,(n, % = 1)}

(ili) mu.eta: %’f] = %F(n,zﬂ =)

S P, = 1) = 5L (exp {1, = 1))

— (%hm(n, P = %)) exp {hn, (1, % = 1)}

(iv) valideta: TRUE, if  is in the domain of F'(n, ¢ = ¢y).
(v) name: “psilPOISS” for the right tail modification.

Remark 6.32
In the setting given above we speak of a right tail modified Poisson regression.

Let the right tail modification h,,(n,9% = 1) be given as in Definition

inverse of it is given as calculated in Equation and the partial derivative w.r.t. 7 is
given as calculated in Equation . We determine the values, which are in the domain
of F(n,v =11). As we derived above we have:

F(n,v = 1) = exp {hy, (0, = ¢1)}

The domain of exp{-} is the real line. Therefore, n has to be in the domain of the
hpsi function h,,(n,% = 1) as given in Equation (A.1). We derived the following
implementation of the right tail modified log link called “psilPOISS”.

Example 6.33 (Right tail modified Poisson regression)
6.2, then the

psilPOISS<-function(psil = 1, etal = 0)
{linkfun<-function(mu){hpsilINV(psil, log(mu), etal)}
linkinv<-function(eta){exp(hpsil(psil, eta, etal))}
mu.eta<-function(eta) {exp(hpsil(psil, eta, etal))*

hpsilDERIV(psil, eta, etaO)}
valideta<-function(eta) {h <- 1:length(eta)
for (i in 1:length(eta) ) {
if (is.finite(linkinv(etal[il))) {h[i] <- TRUE}
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else {h[i] <- FALSE}
+
h
}
link <- paste("psilPOISS(", psil, " , " , etal, ")")
structure(list (linkfun = linkfun,
linkinv = linkinv,
mu.eta = mu.eta,
valideta = valideta,
name = link),
class = "link-glm")

Example 6.34 (Coal mining fractures)

Now we present the output of the right tail modified Poisson regression with two differ-
ent parameters. As in Example our analysis is based on the data frame mining.ex
(see Example . The first parameter is chosen in a way that decreases the deviance
drastically (for further information see Example [7.3). For the other parameter we choose
11 = 1. This yields to an ordinary GLM with family = “poisson” and link = “log”.

mining_glm_right<- glm(formula = y~inb.centextrp.cen,
family = poisson(link=psilP0ISS(psil=-0.57,

eta0=0)),
data = mining.ex)
summary (mining_glm_right)
##
## Call:
## glm(formula = y ~ inb.cen + extrp.cen,
#i# family = poisson(link = psilPOISS(psil = -0.57, etald = 0)),
#i data = mining.ex)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.999 -0.633 -0.171 0.419 2.103
##
## Coefficients:
#H Estimate Std. Error z value Pr(>|zl)
## (Intercept) 3.09432 1.02158 3.03 0.0025 =*x
## inb.cen -0.01018 0.00403 -2.53 0.0115 *
## extrp.cen 0.35944 0.11124 8. 28 0.0012 =*x
## --—-
## Signif. codes: O 'x*x' 0.001 '#x' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##

## (Dispersion parameter for poisson family taken to be 1)
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##

## Null deviance: 74.984 on 43 degrees of freedom
## Residual deviance: 30.757 on 41 degrees of freedom
## AIC: 133

i

## Number of Fisher Scoring iterations: 17
summary (mining_glm_right)$deviance

## [1]1 30.76

Remark 6.35 (No transformation for ¢; = 1)
mining_glm_right2<- glm(formula = y~inb.centextrp.cen,
family = poisson(link=psilP0ISS(psil=1,
eta0=0)),
data = mining.ex)
summary (mining_glm_right2)$deviance

## [1]1 42.09

Setting the link parameter v to 1 yields to no transformation (see Remark .
Hence, the summary of mining_glm_right2 yields to the same output as in Example 5.5
In particular, the deviance is the same, as can be seen above.

6.2.5 Gamma family with left tail modified inverse link

In the following we want to derive the left tail modified inverse link function. In a gamma
regression model with inverse link no modification other than the left tail modification is
allowed.

Remark 6.36 (Gamma family with inverse link)
In Subsection [3.3.4] we defined the ordinary inverse link function through the following
specifications:

(i) linkfun: n = g(p) = %

(ii) linkinv: u=g'(n)=F(n) = %
(ili) mu.eta: Z—’;(F(n)) = —n%

(iV) valideta: 1 ({neR}N{n#£0}}

We can define the left tail modified gamma regression by modifying the linkinverse in
the ordinary gamma regression as follows.
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Definition 6.37 (Left tail modified gamma regression)
Let h,, (1, % = 12) be the left tail modification as defined in Definition |6.3] Then, the left
tail modified gamma regression has an inverse link function of the following form:

1
hno (na 17b = ¢2)

Definition 6.38 (Left tail modified inverse link)
Using Equation ([6.5)) we can define the left tail modified inverse link through the following
specifications:

(i) linkfun: g(p, v = ¢):
We had n = g(pu) = ﬁ for the inverse link function. Hence, now we have:

F(n, ¢ =) = (6.5)

(1,80 = ) =

U
&= (hy(np =) (%)
= g(:ua 77/) - 77Z)2> - (hno(na 77/) - ¢2>>_1 (%)
(i) linkinv: F(n,¢ =) = s

(ili) mu.eta: g—‘n‘ = a%F(n,l/) = 1hy):

0 0 1
iy — -
an (% = v2) On hoyy (n, % = 1)

0 1
T (a_nhﬂ0(777 ¢ N w2)> (hno (777 ¢ = ¢2))2

(iv) valideta: TRUE, if n is in the domain of F'(n, % = ).

(v) name: “psi2GAMMA” for the left tail modification.

Remark 6.39
In the setting given above we speak of a left tail modified gamma regression.

Example 6.40 (Left tail modified gamma regression)

Let the left tail modification h,, (1,9 = 1») be given as in Definition , then the inverse
of it is given as calculated in Equation and the partial derivative w.r.t. 7 is given
as calculated in Equation (A.6). We determine the values, which are in the domain of
F(n,v = 19). As we derived above we have:

1
ho (0, 9 = 1)2)

Therefore, the domain of F'(n, 1 = 1),) is the domain of the h, (1, ¥ = 1)) except for the
values of 7, where h, (1,9 = 1)3) = 0. The domain of the corresponding hpsi function is
given in Equation (A.4). We derived the following implementation of the left tail modified
inverse link called “psi2GAMMA?”.

F(n7¢:¢2> =
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psi2GAMMA<-function(psi2 = 1, etal = 0)

{linkfun <- function(mu) hpsi2INV(psi2, (1/mu), etal)
linkinv <- function(eta) 1/hpsi2(psi2, eta, etal)
mu.eta <- function(eta) {

hpsi2DERIV(psi2, eta, etal)*(- (1/hpsi2(psi2, eta, etald))~2)
+
valideta<-function(eta) {h <- 1:length(eta)
for (i in 1:length(eta) ) {
if (is.finite(linkinv(etalil))) {h[i] <- TRUE}
else {h[i] <- FALSE}
+
h
}
link <- paste("psi2GAMMA(", psi2, " , " , eta0, ")")
structure(list(linkfun = linkfun,
linkinv = linkinv,
mu.eta = mu.eta,
valideta = valideta,
name = link),
class = "link-glm")

Example 6.41 (Canadian automobile insurance)

73

Now we present the output of the left tail modified gamma regression with two different
parameters. As in Example [5.6] our analysis is based on the data frame carinsur.ex

(see Example {4.6). The first parameter is chosen in a way that decreases the deviance
drastically (for further information see Example [7.4)). For the other parameter we choose

Y9 = 1, which yields to an ordinary GLM with family = “Gamma” and 1ink = “inverse”.

carinsur_glm_left<- glm(formula = (Cost/Claims) Merit+Class,
family = Gamma(link=psi2GAMMA (psi2=-1.39,
eta0=3.6)),

weights = Claims,
start = ¢(3.2,0,0,0,-0.3,-0.1,-0.5,0.25),
data = carinsur.ex)

summary (carinsur_glm_left)

i

## Call:

## glm(formula = (Cost/Claims) ~ Merit + Class,

## family = Gamma(link = psi2GAMMA(psi2 = -1.39, etal = 3.6)),
## data = carinsur.ex,

## weights = Claims,

i start = ¢(3.2, 0, 0, 0, -0.3, -0.1, -0.5, 0.25))

#
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## Deviance Residuals:

## Min 1Q Median 3Q Max

## -6.108 -1.337 0.000 0.956 B .78

##

## Coefficients:

#Hit Estimate Std. Error t value Pr(>|t])
## (Intercept) 2.81e+00 2.68e+00 1.05 0.32
## Meritl 6.57e-01 3.02e+00 0.22 0.83
## Merit2 6.3be-01 3.18e+00 0.20 0.84
## Merit3 5.79e-01 2.72e+00 0.21 0.83
## Class2 -9.12e-01 6.34e+00 -0.14 0.89
## Class3 -9.16e-02 1.50e+00 -0.06 0.95
## Class4 -2.37e+04 5.07e+08 0.00 1.00
## Classb 3.56e-01 1.96e+00 0.18 0.86
##

## (Dispersion parameter for Gamma family taken to be 2050)
#

## Null deviance: 1556.01 on 19 degrees of freedom
## Residual deviance: 122.19 on 12 degrees of freedom
## AIC: -3100206

#

## Number of Fisher Scoring iterations: 15

summary(carinsur_glm_left)$deviance

## [1] 122.2

Remark 6.42 (No transformation for ¢, = 1)

carinsur_glm_left2<- glm(formula = Cost/Claims~Merit+Class,
family = Gamma(link=psi2GAMMA (psi2=1,

eta0=3.6)),

weights = Claims,
start = ¢(3.2,0,0,0,-0.3,-0.1,-0.5,0.25),
data = carinsur.ex)

summary (carinsur_glm_left2)$deviance

## [1] 167.4

Setting the link parameter v, to 1 yields to no transformation (see Remark|6.1]). Thus,
the summary of carinsur_glm_left2 yields to the same output as in Example In
particular, the deviance is the same, as can be seen above.
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6.3 The glmProfile function

In the following we will define a function called “glmProfile”. It was also presented in
Czado| (2007) and can be seen as an extension to the ordinary glm function in R.

Remark 6.43 (Motivation of the glmProfile function)

For every single, appropriate value of ¥ we can (given a value for 1) define a user-defined
link function. For each of these user-defined link functions we can run the glm function
(see examples in Section [6.2)). For each value of 9 specified through the arguments psil
and psi2, we calculate the deviance using a glm function with our user-defined link.
Now we want to investigate, which value we should take for the parameter 1 in order to
receive the best-fitting model (w.r.t. the deviance). Therefore, we would like to take the
parameter of 1 corresponding to the model with the minimal deviance. The parameter
we should take can be determined with the glmProfile function, which we will define
now. We can also see a plot describing the decrease of the deviance graphically.

Definition 6.44 (Definition of the glmProfile function)
The glmProfile function requires the following input:

(i) formula: is an expression of the form: response ~ covariate; + - - -+ covariatey, (as
in the ordinary glm function). For every data set we have to decide which covariates
we want to take in our model.

(ii) values for the parameter 1:

e for a single tail modification we have to specify either ; (for a right tail
modification) or 1y (for a left tail modification). For the single right tail
modification (single left tail modification) a grid of ¢; values (15 values) has to
be specified in the vector psil (vector psi2) which we pass to the glmProfile
function. The default values for both psil and psi2 are 1, which yields to no
transformation.

e for a both tail modification we have to specify both ¢; and 5 in the corre-
sponding vectors psil and psi2. This gives a grid of ¥ = (i1, 19) values.

(iii) value for ng: for every kind of modification we have to declare a value for 7y in
the variable eta0. If no value is given in the command line, then 7 is set to 0 by
default.

(iv) family: we can specify one of the families introduced in Section [3.3] Since we
modified both the logistic regression and the probit regression, we have to make little
changes stating the family. One of the following families is possible (in the brackets
we give the numbers corresponding to this family in the procedure of glmProfile):

e family — "gaussian" (internally handled with familyinteger — 1). This
family is set to be the default family as in the ordinary glm function in R.
e family = "poisson" (internally handled with familyinteger = 2).

e family — "logit" (internally handled with familyinteger — 3). This state-
ment is slightly different from the specification in the ordinary glm function
(there it would have been family = binomial(link = "logit")).
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e family = "probit" (internally handled with familyinteger = 4).
e family = "Gamma" (internally handled with familyinteger = 5).
(v) tail: we have to specify what tail transformation we like to perform. Table[6.1]gives

an overview of allowed tail modifications. The following specifications are possible
(again we give the internal numbers corresponding to this transformation):

e tail = "left" (internally handled with tailinteger = 1) corresponding to
Def. This modification is as default (i.e. when no specification of tail is

assigned).

e tail = "right" (internally handled with tailinteger = 2) corresponding to
Def.

e tail = "both" (internally handled with tailinteger = 3) corresponding to
Def. 6.4

7

(vi) weights: optional statement with default value NULL. It contains the “prior weights
to be used in the fitting process as in the ordinary glm function in R (see help (glm)).

(vii) start: optional statement with default value NULL. It contains starting values
for the parameters in the linear predictor as in the ordinary glm function in R
(see help(glm)). Thus, we have to specify a vector of length p = k+1 (since n is
depending on 3 € R?, see Equation (3.5))). We will specify a vector, which is close
to the estimates of the regression parameters in the ordinary GLM (see Chapter [3)).

(viii) data: data set containing n rows of observations of both the response and the
covariates as for the ordinary glm function.

If we specify all of the required arguments of the glmProfile function we get the
following output:

(i) plot:

e for a single tail modification: a deviance profile plot for the link parameter.
Therefore we plot the link parameter (either ¢ or 1)5) versus the corresponding
deviance for these values. We also include an approximate 95% confidence
interval for the link parameter (printed with dotted lines).

e for a both tail modification: a deviance profile contour plot for the link pa-
rameters. Therefore we plot the link parameter v, on the x-axis and v, and
the y-axis together with the deviance surface for the grid of (¢, 1)5) values.
In addition we include an approximate 95% joint confidence region for the link
parameters (¢, ¥5) (printed with dotted lines).

(ii) computed values: the glmProfile function returns a list containing the values of
1 which we can access by $psi for a single tail modification (returning either the
values of ¢ for a right tail modification or those of 1 for a left tail modification)
and by $psil and $psi2 for a both tail modification. The list also contains the
deviance for the values of ¥ which we can access by $dev.
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7

(iii) summarizing statement: furthermore the glmProfile function gives the minimum

deviance and the value of v for which it was attained.

glmProfile<-function(formula = formula(data),
psil =1, psi2 = 1, eta0 = 0,
family = "gaussian",
tail = "left",
weights = NULL,
start = NULL,
data = stop('data missing")){
w <- weights
if (any (w < 0)){stop("negative weights not allowed")}
familyinteger <- charmatch(family, c("gaussian",
"poisson',
"logit",
"probit",
"Gamma"))
tailinteger <- charmatch(tail, c("left",
"right",
"both"))

RERRBHRRERARRARRARIRRRRARRARRARRRRRRABRARHRRERRRRRAREARERARRARE
# Gaussian: all modifications allowed #HEHHHHHEHFRRAARERSRRSRS
RERRBHHRBRARRRRRRBBRRBRARRRRRRBBRRRRRBRRBERBRRRERRRRARBRBRRRRS
if(tailinteger == 1 & familyinteger == 1){

psi <- psi2

linkset <- psi2GAUSS

familyname<<-gaussian
}
else if(tailinteger == 2 & familyinteger == 1){

psi <- psiil

linkset <- psilGAUSS

familyname<<-gaussian
}
else if(tailinteger == 3 & familyinteger == 1){

linkset <- psil2GAUSS

familyname<<-gaussian

}

HERBBRRRRRRARRRBRRRRRRRRRRRBRRRRRRRRRRRBRRRRRRRRRRARRRR R RS
# Poisson: only right modification allowed #EZKAARRZHARBREHAH
HERBBRRRBRRARRRRBRBRRRHRRRRRBRRRRHRRARRRBRRRRRRRRRRRRRBR R R
else if(tailinteger == 2 & familyinteger == 2){

psi <- psil

linkset <- psilPOISS
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familyname<<-poisson

}

BERBRBRBRAARRRRRAA R RARBRBRBRRA BB RRRARRRBRA BB RRRARRRRRA R HHH
# Logit: all modifications allowed #HAZZRARARZHRARBRHHRABRBHHS
HRABRBARBRERRRAERRRRBRBRRBRBRRBR R RRRRRRABRBRRBRERRBRERR AR R R
else if(tailinteger == 1 & familyinteger == 3){

psi <- psi2

linkset <- psi2LOGIT

familyname<<-binomial
}
else if(tailinteger == 2 & familyinteger == 3){

psi <- psil

linkset <- psilLOGIT

familyname<<-binomial
}
else if(tailinteger == 3 & familyinteger == 3){

linkset <- psil2L0GIT

familyname<<-binomial

+

HERBRARRBRARRBRRRRBRARRRRARRRRARBRRA BB R AR BRR AR BRR R RR R R RH
# Probit: all modifications allowed #ARRKABBEZHARERBBREREH SR Y
RERBHRRRBRABRRRRRRBRARRBRARRRRRRRBRA BB RBRR AR BR R B RS A
else if(tailinteger == 1 & familyinteger == 4){

psi <- psi2

linkset <- psi2PROBIT

familyname<<-binomial
}
else if(tailinteger == 2 & familyinteger == 4){

psi <- psil

linkset <- psilPROBIT

familyname<<-binomial
b
else if(tailinteger == 3 & familyinteger == 4){

linkset <- psil2PROBIT

familyname<<-binomial

}

RERBBRRRRRRRRRRBRRBRRRRRRRRARRBRRRBRRRRRBRRRRRRR AR RRR AR AR A
# Gamma: only left modification allowed #HE#RZHRARBRZHARIREHHH
HERBBRRRHRRARRRRBRBRRRHRRRRRBRRRRHRRBRRRRRRBRRRRRRRRRRBR AR AR A
else if(tailinteger == 1 & familyinteger == 5){

psi <- psi2

linkset <- psi2GAMMA
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familyname<<-Gamma

}

else{stop(paste(tail, "tail modification is not available for the",
family, "family"))}
Weights <<- w
HRABRERRBRERRRA BB RRBRERRBRBRRRRBRRRARR G HA G R
# BOTH TAIL MODIFICATIONS #
S S eSS S RS S E g E S e
if (tailinteger == 3){
psil <- sort(psil)
psi2 <- sort(psi2)
r <- matrix(0, nrow = length(psil), ncol = length(psi2))
for(j in 1:length(psil)){
for(k in 1:length(psi2)){
r[j, k] <- glm(formula,
family = familyname(link = linkset(psill[j],
psi2[k],
etal)),
weights = Weights, start=start,
data = data)$deviance
}
}
dimnames(r) <- list(as.character(psil), as.character(psi2))
out <- list(psil = psil, psi2 = psi2, dev = r)
rpsil <- range(psil)
rpsi2 <- range(psi2)
par(oma = c(2, 0, 0, 0))
contour(psil, psi2, r, xlim = rpsil, ylim = rpsi2,
xlab = "psil", ylab = "psi2")
title(main = "Deviance Profile Contour Plot for the Link Parameters',
sub = paste(family, "GLM with",
tail, "tails modified with 95% confidence region"))
sortr <- sort.list(r) [1]
sortpsi2 <- floor(sortr/length(psil))
temp <- sortr - sortpsi2 * length(psil)
if(temp == 0) {sortpsi2 <- sortpsi2 - 1}
sortpsil <- sortr - sortpsi2 * length(psil)
sortpsi2 <- ceiling(sortr/length(psil))
cat(paste("\nminimum deviance=", min(r), "attained for",
"psil=", psil[sortpsill], ",psi2=", psi2[sortpsi2],".\n\n"))
conlvl <- min(r) + qchisq(0.95, 2)

if (conlvl < max(r)) {
par(new = T)
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contour(psil, psi2, r, xlim = rpsil, ylim = rpsi2,
levels = conlvl, 1ty = 2)
par(new = T)

plot(psil[sortpsill],
psi2[sortpsi2],
xlim = rpsil, ylim = rpsi2)
}
}
BREBRRERARERR R RR R HR R B RR R RRR R RRERARERR R
# SINGLE TAIL MODIFICATIONS #
HRABRBHRBRERBRABREHRBREHRBRBRRRRBRRRARR G HA G R
else {

psi <- sort(psi)
r <- rep(0, length(psi))
for(j in 1:length(psi)){
r[j] <- glm(formula,
family = familyname(link = linkset(psil[jl, eta0)),
weights = Weights, start=start,
data = data)$deviance

out <- list(psi = psi, dev = r)
ry <- range(r, min(r) - (max(r) - min(r)) * 0.05)
plot(psi, r, ylim = ry, ylab = "deviance", xlab = "psi", type = "1",
main = '"Deviance Profile Plot for the Link Parameter",

sub = paste(family, "GLM with",

tail, "tail modified with 95% confidence interval"))

abline(h = min(r) + 2, 1ty = 2)
devcon <- min(r) + 2
rlow <- r[psi < psilsort.list(r)[1]]] - devcon
rhigh <- r[psi > psilsort.list(r)[1]]] - devcon

if (max(rlow) > 0) {

psilow <- sort.list(abs(rlow))[1]

segments (psil[psilow], ry[1], psilpsilow], devcon, 1ty = 2)
}

if (max (rhigh) > 0) {

psihigh <- sort.list(abs(rhigh)) [1]

segments (psil[psihigh + sort.list(r)[1]1], ry[1], psil

psihigh + sort.list(r)[1]], devcon, 1ty = 2)

}
cat(paste("\nminimum deviance=", min(r),
"attained for", psilsort.list(r)[1]1], ".\n\n"))
}
out
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Remark 6.45 (Interpretation of the 95% - confidence interval)

The 95% - confidence interval allows us to assess whether the link modification is necessary.
We saw when setting 11, 1o = 1 or p = (1,1) we obtain no transformation (see Remark
and thus we use the same link function as in the ordinary GLM. If consequently these
values (i.e. @ = (1,1) or ¢4, »o = 1) lie within the confidence interval (or confidence
region, respectively) no tail modification would have been necessary, i.e. the analysis of
the ordinary glm function suffices. In these cases the decrease of the deviance is only
weak. Whenever ¢); = 1 is not contained in the confidence interval given in the deviance
profile plot a right tail modification seems appropriate. Analogously if ¥y = 1 is not
contained in the confidence interval, then a left tail modification yields to an improved fit
of the model. The same results can be adopted for the both tail modifications.

Remark 6.46 (Starting| value for 7))
According to (Czado| (2007) the following choices for the starting value 7, are reasonable:

e it is advisable to choose 1y = By using centered covariates, varying around their
center [y.

e if in a binary regression the data sets show symmetric proportions around 0.5 one
can take ny = 0.

e if the proportions are not symmetric one has to estimate the success probability pg.
This can be done via the observed proportions for discrete random variables. For
continuous random variables one should group the data primarily.

In Chapter [7] we will present the output of the glmProfile function. We restrict
ourselves to apply the glmProfile function only on the examples for the single tail mod-
ifications with the default link functions. All in all we will derive the parameters for the
parametric link by applying the glmProfile function on the following data sets and link
functions:

H Family ‘ Link ‘ Data set ‘ As seen in ‘ Ordinary GLM H

Gaussian | identity | pcb.ex Example 4.1| | Example 5.1
Binomial | logit beetle.ex Example |4.2| | Example [5.2
Poisson | log mining.ex | Example 4.5| | Example [5.5
Gamma | inverse | carinsur.ex | Example 4.6| | Example [5.6

Table 6.2: Overview: data sets on which glmProfile will be applied.

Remark 6.47 (Further examples)
Two other examples were discussed extensively in |Czado, (2007). From this technical
report we took the optimal values for the corresponding parameters for the tail modifying

link functions (see Example and Example 6.27)).
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7 Examples: the glmProfile function

7.1 Modified Gaussian regression

Example 7.1 (Applying glmProfile on PCB data)

Now we derive the optimal value for the parameter v we have used in the right tail
modified Gaussian regression (see Example . Therefore we apply the glmProfile
function on the data frame pcb.ex with the following specifications:

glmProfile(formula = log.pcb~age.cen,
psil = seq(-0.3, 1.3, by=0.015),

family = "gaussian",
tail = "right",
data = pcb.ex)

Deviance Profile Plot for the Link Parameter

deviance

I I I
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gaussian GLM with right tail modified with 95% confidence interval
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7.2 Modified logistic regression

Example 7.2 (Applying glmProfile on beetle data)

Now we derive the optimal value for the parameter 1), we have used in the left tail modified
logistic regression (see Example [6.18). Therefore we apply the glmProfile function on
the data frame beetle.ex with the following specifications:

glmProfile(formula = cbind(y, n-y)~dose.cen,
psi2 = seq(-0.4, 0.8, by=0.01), eta0=0,
family = "logit",
tail = "left",
data = beetle.ex)

Deviance Profile Plot for the Link Parameter

deviance
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7.3 Modified Poisson regression

Example 7.3 (Applying glmProfile on mining data)

Now we derive the optimal value for the parameter v; we have used in the right tail
modified Poisson regression (see Example . Therefore we apply the glmProfile
function on the data frame mining.ex with the following specifications:

glmProfile(formula = y~inb.centextrp.cen,
psil = seq(-1, 0.2, by=0.01), eta0=0,
family = "poisson",
tail = "right",
data = mining.ex)

Deviance Profile Plot for the Link Parameter

deviance
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7.4 Modified gamma regression

Example 7.4 (Applying glmProfile on car insurance data)

Now we derive the optimal value for the parameter 1), we have used in the left tail modified
gamma regression (see Example . Therefore we apply the glmProfile function on
the data frame carinsur.ex with the following specifications:

glmProfile(formula = (Cost/Claims) “Merit+Class,
psi2 = seq(-1.55, -0.3, by=0.01), eta0=3.6,
family = "Gamma",
tail = "left",
weights = Claims,
start = ¢(3.2,0,0,0,-0.3,-0.1,-0.5,0.25),
data = carinsur.ex)

Deviance Profile Plot for the Link Parameter

deviance
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8 Comparison

Table sums up the key quantities we have derived in our work in the previous chap-
ters. To clarify the improvement of the tail modified GLMs (using user-defined links) we
calculated the improvement (abbreviated by “impr.”) of the deviance with the following
formula:

deviance in improved model

1) - 100%

improvement in % = , ; . -
deviance in ordinary model

Remark 8.1 (Origin of the values)
The single values can be taken from the sections where we derived them. The values were
rounded to an accuracy of two digits.

H Family H Gaussian \ Binomial \ Poisson \ Gamma H
Data sets
name pcb.ex beetle.ex | bys.ex rotifer.ex | mining.ex | carinsur.ex
as seen in Ex. Ex. Ex. Ex. Ex. Ex.
link identity logit logit probit log inverse
# obs. 28 8 18 40 44 20
# covar. 1 1 3 3 2 7
p = k+1 2 2 4 4 3 8
dof 26 6 14 36 41 12
Ordinary GLMs
as seen in Ex. Ex. Ex. Ex. Ex. Ex.
deviance 8.36 11.23 40.77 471.25 42.09 167.43
Tail modified GLMs
tail right, ¢, left, 1 left, 5 | both, ¥ | right, ¥ | left, 1),
opt. value | 0.18 0.16 —1.96 (0,—0.5) | —0.57 —1.39
see Ex.[6.11] | Ex.|6.18 | Ex.[6.20] | Ex.[6.27] | Ex.|6.34] | Ex.[6.41
and Ex. (7.1 Ex. (7.2 Crado (2007)) Ex. (7.3 Ex.[7.4
deviance 6.33 3.04 9.26 \7253.58 30.76 122.19
Comparison of the ordinary GLM with the tail modified GLM
impr. in % || 24.28 (7293 [7729 [46.19  [26.92  [27.02

Table 8.1: Summary: improvement due to tail modifications.

Remark 8.2 (Degrees of freedom)

The difference between the number of observations and the number of parameters we have
to estimate in our model is called the number of degrees of freedom of the model (often
abbreviated by “dof”). Hence, we have dof = n - p (where p = k+1).

With Table we have the possibility to compare the ordinary GLMs with the im-
proved ones. We can see that in all of the examples we were able to reduce the deviance
drastically. I.e. all of the improved GLMs have optimal 1 - values being far from (1, 1).
This indicates that the goodness of fit of the ordinary GLMs could be optimized by using
user-defined link functions in all of our examples.
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9 Conclusion and outlook

This thesis addressed the implementation of parametric link families in R to fit generalized
linear models. |Czado (2007)) described generalized linear models with parametric links and
their implementation in the statistical environment of S. A crucial point was the definition
of the general h(-) - power transformations as given in Section We were able to define
parametric link functions being either one- or two-parametric extensions of the ordinary
link functions in R (see Section [6.2). The glm function, which is already implemented in
R, can be called using a parametric link instead of an ordinary link function. This way
we were able to decrease the deviance drastically in all of our examples (see Chapter .
In Chapter |7| we determined the corresponding parameters for the tail modifying links.
The function being used to determine the parameters is called glmProfile. It was one
of the functions which were presented in (Czado| (2007)) to fit these improved GLMs using
user-defined link functions. There were also other interesting extensions given for several
purposes. Now we want to provide an outlook on the theory and functions we described
in this thesis by describing these extensions briefly.

e glm.mle: finds the maximum likelihood estimate of the joint vector (3,1) € RPF2.
For the single tail modifications we would expect that the joint vector is (3, 1) (right
tail modification) or (3, 1,) (left tail modification) both being € RFF!. Nevertheless,
also for single tail modifications we have to specify the vector @ (setting ¢y, = 1
for left tail modifications and o = 1 for right tail modifications) in the glm.mle
function. Either way we have to find the MLE of the joint vector (3,1) € RPT2,
This can be seen as an extension to our theory since we have only estimated the
regression parameter 3 € RP. We pretended that somebody gave us the “correct”
value of 7 to run the glm function with a parametric link. Hence, we did not derive
estimates for @ but rather we took the values delivering the minimum deviance by
running the glmProfile function.

e glm.inf: a distortion coming from our approach is that the standard errors of the
regression estimates are thus calculated as if the value of 9 was fixed. Therefore it
would be useful to have a function providing the standard errors for the regression
parameter (3,1) € RP*? when estimating them jointly. This is exactly what the
function glm.inf does. It calculates the standard errors for both the model with
fixed 1) only estimating 3 and the model estimating (3, %). This function also com-
pares both standard errors and illustrates the variance inflation due to additional
estimation. Moreover, the glm.inf function gives the link parameter 1) with its
standard error and an estimated matrix containing correlations between the inter-
cept, the covariates and the link parameters. This is an extension to our approach
since we can only determine the standard errors of the regression parameters (i.e. of
Bifori e {1,...,n}) by using Remark m This way we have no information about
the estimation of . If we consider the estimation of 1) an equivalent theory about
maximizing the joint likelihood of (83,1)) would arise (i.e. maxg., (3,7 | y)). For
the optimization also joint versions of the score equations and the fisher information

—

matrix would appear. And as in Remark [3.28| the asymptotic distribution of (3, 1))
would be of interest.
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e glm.fitted: serves to compare the improved tail modified models with the ordi-
nary generalized linear models. It plots the estimated linear predictors versus the
observed and the fitted means for the ordinary GLM and the GLM using a para-
metric link function.

We could also think out of the box and enlarge the topics presented in this thesis
following the upcoming motivation. We did not use methods telling us that a linear re-
gression model fits best to the data, i.e. yields to the most convincing predicted values.
Thus, for specific data one could also compare the results of a GLM with the results of a
non-linear model. Analysis of non-linear regression models is also needed in applications
and described in the literature (e.g. Bates and Watts (2007)). Even if a linear regres-
sion model is appropriate we have to decide whether it makes sense to transform the
response or the covariates. This is a mutual process alternating in model selection and
data transformation. Another point is the choice of the covariates. In many data sets we
could take a wide range of the available covariates. Often this is unrewarding. Therefore,
it is necessary to penalize the complexity of the model if the improvement of the fit is
not sufficient. The selection criteria uses the theory of testing hypothesis to assess the
adequacy of a bigger model against the adequacy of a more compact one (see Fahrmeir
and Tutz| (2001) (Chapter 4)).

All in all we can conclude that the theory of generalized linear models is very interesting
and wide-ranging. There are a lot of remarkable results and extensions. It is therefore not
surprising that GLMs are essential models in both the theory about statistical analysis
and the practical applications. One can reliably use the generalized linear models in
applications due to a variety of well-developed and numerically stable routines for many
statistical environments (like R for instance). The progress of delivering new packages
and functions is not stagnating. Hence, the theory and applications of generalized linear
models and its extensions will be a suspenseful subject also in the near future.
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A Appendix

A.1 Members of the exponential family
A.1.1 Normal distribution

The normal distribution A/ (p1, 02) has the following density:

oy _ 1 Lfr—p ’ _ 1 (x_N)Q
f(x\uaa)—a\/%exp{—§< - )}—U 2W6XP{_T}

We want to rewrite the density in the form of Equation (3.1)):

@ o) = — exp{—%}

= exp —(I_H)2+ln( L )
202 o2
=exp{ — (z =) —1In (0\/ 27r>
202
(x — ) 1 2
:exp{— 52 2ln (0 27r)
22 |
:exp{—x Qi/;+u ——1In (0'2271')}
—® + 2wp — P )
= exp { 52 In (0 27?)}
_ 2 2 2
= exp { = —In (U 2#)}
1,2 1.2
_ L L 2
—exp{ = 2 ——1n(a 27r)}
( :=b(0) )
=0(p) AN
xS — l/f 1/ 22
_ 2 x 2
= eXp T-{— |:—§ (;—l—ln (O' 27T)):|
~— - -~ .
=a(¢) =c(x,¢)
\ Vs

Hence, we can take ¢ = 0? ((¢ may be unknown)) and w = 1 and therefore, a(¢) = & =
02 = ¢, 0(p) = p and b(0) = 1> = £ And
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122

2
=—1In <\/¢27r> — ;—¢

Remark A.1 (Origin of the name generalized linear model)
Only by ensuring that the normal distribution is a distribution of the exponential family
are we able to derive the generalized linear models from the linear regression model.

Remark A.2
We are aware of the following properties for X ~ N (yu, 0?):

e parameters: © € R and 0% > 0
e E[X]=p
o Var[X] = o?

Remark A.3 (The standard normal distribution)
It is common to denote the density of the standard normal distribution by ¢ and the
distribution function by ®. Hence, we use the following notation:

()

f@]0,1):=¢
®(x)

F(z):

A.1.2 Scaled binomial distribution

By the expression scaled binomial distribution we refer to the following situation. For
Y ~ Bin(n,p) we say Y* := X ~ ScaledBin(n, p) follows a scaled binomial distribution.
The ordinary binomial distribution has the following probability mass function:

]P(Y:k;):(Z)pk(l—p)”_k ke{0,1,...,n}

Hence, the probability mass function of the Y* ~ ScaledBm(n,p) is given by (since
k¥ =k k has another domain, i.e. k* € {0, % - n,..., - o=l

Y * *
P (Y* =—= k) =P (Y =nk*) = ( 2*>p”’“ (1 —p)= k")
n

Now we want to rewrite the probability mass function in the form of Equation (3.1)):

Y n . .
n * *
_ 1 nk 1 — n—(nk*)

— exp {m ((n::;)) + (nk*) In (p) + (n — (nk™)) In (1 — p)}
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- {1“ <(JZ>> + (nk") (In (p) = In (1 = p)) + nln (1 ‘p)}
= exp {m <(n2>> + (nk*)In (&) +nln(1 —p)}
= exp {n (k*ln (%) +1In(1 —p)) +In (( k*))}
ceof (e 125) i -n) (3}
(WO o e \
w2y maop)
. k1 (1p>; In (1 - p) +M
| :Z;) i=c(k*,9)) J

Hence, we can take ¢ = 1 and w = n and therefore, a(¢) = %, 0 =0(p) =1In (Lp) and

b(#) = —In(1—p)=In (L)

L=p
. 1 D
Le. Tp—fp—kl—exp{ﬁ}—l—l
= b(0) = In (1 + exp{0})

Remark A.4
We are aware of the following properties for Y ~ Bin(n, p):

e parameters: n € N and p € (0,1)
e E[Y]=np

o Var[Y] =np(1 —p)

Remark A5
By Remark |A.4| we can derive properties for Y* = % ~ ScaledBin(n, p):

e parameters: n € N and p € (0,1)
« E[Y']—p

° VCLT’ [Y*] — p(1-p)

n

Remark A.6 (Degenerated cases)
p =0 and p = 1 are degenerated cases which will not be regarded in this thesis.
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A.1.3 Poisson distribution

The Poisson distribution has the following probability mass function (for k € Ny):
)\TL
P (X =n)=exp{-A}—
n!
Now we want to rewrite the probability mass function in the form of Equation (3.1)):
A" A"
P (X =n)=exp{-A}— =exp {In { exp{-A}—
n! n!

= exp {In (exp{—A}) +In (A\") —In(n!)}
=exp{—-A+nln(\) —In(n!)}

/ 3
9 b(0)
In (\) A
nln —
=expy ——71 + (—In(n!))
1 =c(n,9))
N
\ =a(¢) ),

€ e

Hence, we can take ¢ = 1 and w = 1 and therefore, a(¢) =
and b(0) = exp{0} = A

Remark A.7
We are aware of the following properties for X ~ Pois()):

=1=1,0=000)=In()

e parameter: A > 0
e E[X]=A
o Var [ X| =\
A.1.4 Gamma distribution

The gamma distribution I'(u, v) has the following density:

v

i) = b e { =L 1o @)

S IOERACTIE

We want to rewrite the density in the form of Equation (3.1)):

et gty (2) = oo

el ()2
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tial family

of the exponen

A.1 Members

_1/_

1 and therefore, a(¢) = % !

(v may be unknown) and w

take ¢ = }/
1

—In(—0)
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Remark A.8
We are aware of the following properties for X ~ I'(u, v):

e parameters: © >0 and v > 0
e gamma - function: I'(z) = [~ t* e~ dt

e BE[X]=pn

e Var [X] = %2
Remark A.9 (Parametrization of the gamma distribution)
Many different parametrizations of the gamma distribution can be found. We will use the
parametrization as given in Fahrmeir and Tutz| (2001))(p. 23).

A.2 More about the general h(:) - power transformations
A.2.1 Right tail modification

Recall that we defined the right tail modification in Definition In the following we
want to derive certain functions corresponding to h,,(n, 9 = ;). We also present their
implementation in R.

no+1In(n —ny +1) if n>mny and ¢y =0

ot 1)¥1— .
hpo (1,9 = 1) = ¢ o + EREUEL iy > g and 4y # 0
n otherwise (i.e. if n < np)

hpsil <- function(psil = stop("Argument 'psil' is missing"),
eta = stop("Argument 'eta' is missing"), etaO = 0)
{h <- 1:length(eta)
hleta < etal] <- etaleta < etal]
if (any(psil > -le-14 && psil < le-14)) {
hleta >= eta0] <- eta0 + log(etaleta >= etal0] - etald + 1)

}
else {
h[eta >= eta0] <- ((etaleta >= etal] - etal + 1)~psil - 1)/psil
hleta >= eta0] <- h[eta >= etal] + etald
}
h
}

Domain of h,,(n,% = 1)

For given 9 = 11 € R the domain of h,,(n, % = 1) can be expressed as a function of 7:

Liyspo—1y  ifp=mo and ¢y =0
domain(hy,, (n, % = 1)) = Lyewy = § many cases if n > ny and 1, # 0
1pery otherwise (i.e. if n < np)
take easier iﬂplementation

is.finite is an R intern function {is.finite(hno (77,1,1’:1111))}

(A1)
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Since:

for the first case: n > ny and i, = 0:

!
n—1n+1>0 domain of In(-)
<:>7]>?70—1

for the second case: n > ny and ¥, # 0:

This case requires a lot of analysis of different cases. The domain of the function for the

second case is defined by the domain of (77_”0:;# for a specific value of ;. For this

value we differentiate the following cases:
e )1 = 1: the domain is the real line

e )1 = —1: the domain are the values for which n — g+ 1 # 0, i.e. R\ {5y — 1}

o Y1 #F LAY # -1

— Y >0
% 1)y is not integer: the domain are the values for which n—ny+ 1 is positive
(Example: ¢ = 0.5, g is arbitrary = we have —”_’SJ;l_l)
* 1)y is an integer:
- 11 odd: the domain is the real line (Example: ¢ = 3, g is arbitrary
3
- 1)1 even: the domain is the real line (Example: 1, = 2, 1y is arbitrary

= we have —(”7770;1)271)
- ’lbl <0
% 1)y is not integer: the domain are the values for which 1 —ny+ 1 is positive
D S |
(Example: ¢y = —0.5, g is arbitrary = we have _—W)

* 1)y is an integer:
- 11 odd: the domain are the values for which n —ny + 1 # 0, ie.
1

S S|
_ (n—mp+1)3 )
3

R\{no—1} (Example: ¢y = —3, 1 is arbitrary = we have
- 1)y even: the domain are the values for which n —ny + 1 # 0, ie.
1
(n7n0+1>2_1)
2

R\{no—1} (Example: ¢); = —2, g is arbitrary = we have —

for the third case: n < ng:
neR
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Inverse of h, (0,9 =) w.r.t. n

We get:
1= (hy (0,9 = 1))~ ()
exp{y —mo} + o — 1 if n > no and ¥ =0
=93 (Wily —m0) +1)%1 +m9 =1 if n > and 1 # 0 (A.2)
Yy otherwise (i.e. if n < np)
Since:

for the first case: n > ny and ¥, = 0:

y=mno+1In(n—mno+1)
Sy—mn=Inn-—mn+1)
sexply—mt=n—m+1
e n=exp{y —nmo}+n—1
for the second case: n > ny and ¥, # 0:

(n—mo+1)r =1

(G}
(n—m+1* —1

(0

& (y—nmo)r=n—no+1)" =1
Sy—m)r+1=mn—n+1)"
<:>((y—n0)¢1—|—1)¢%1:77—770+1
=y —m)r +1)% +1—1

Yy =rno+

<Y —"No=

for the third case: n < no:

hpsilINV<-function(psil, y, eta0 = 0)

{h <- 1:length(y)

if (any(psil > -le-14 && psil < le-14)){

hly >= eta0] <- eta0 - 1 + exp(yly >= eta0] - etal)
}

else {

h[y >= etal] <- etald - 1

+ ((1 + (psil * (-etal + y[ly >= eta0])))~(1/psil))

}

hly < eta0] <- y[y < etal]

h
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Derivative of h, (1,9 = 1) w.r.t. 7

Now we want to calculate:

5 e (o +n(n —mno +1)) if > and ¢y =0
8_77h77°(77’¢ =) = % Mo + b= n0+1) — 1) it n > 7?0 aﬂjd ¢'1 #0
3 (1) otherwise (i.e. if n < np)
— if > ng and ¢, =0

= (77 — 1o+ D)WY if > o and ¢y # 0
otherwise (i.e. if 7 < 1)

—_

hpsilDERIV<-function(psil, eta, etal = 0)

{h <- 1:length(eta)

if (any(psil > -le-14 && psil < le-14)){
h[eta >= etal] <- 1/(etaleta >= etal0] - etal + 1)
}

else {
hleta >= etald] <- (1 - etal0 + etaleta >= etal]) ~(psil - 1)
}

hleta < etal] <- 1

h

+

Derivative of h, (n,% = ¢1) w.r.t. i,

Now we want to calculate:

9,
ey —
awl 770<777¢ ¢1)
(5o (o +1In(n —mo+ 1)) if > ne and vy =0
1)1 — .
— %(nﬁ%) if n > 19 and ¢y # 0
\ 8%1 () otherwise (i.e. if n < np)
( 8 (n—mo+1)¥1-1 i =
e
_ 0 _ P1ohy —((n— ¥1— .
— In(n—no+1)(n no+1)¢1%¢1 ((n no+1)¥1 1) if n > ny and ¥, 7& 0
L0 otherwise (i.e. if n < np)
( (n—n +1)%’1171 . _
P
=< In(n— no+1)(n—no+11)/)’;1¢1—(77—770+1)¢1+1 if n>mny and Yy #0
0 otherwise (i.e. if n < np)

101

(A.3)
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Remark A.10 .
. . . - 1—
The limit wlir_{lo 8%1 (770 + W%) can by calculated by:
.0 (n—no+1)¢1—1)
lim —— (70 +
Y130 iy (”0 W
_ lim In(n =m0+ 1)(n —no + ¥ — (n —mo + ¥ + 1
N P1—0 W
VHospitat (.| (=m0 + 1) (In(n —mo + 1)(n — no + 1)¥1¢1 + (n — no + 1)**)
N P10 2'¢1
B (ln(n — 1o+ 1)(n —no + 1)%)
21
_ lim In(n —no+1)*(n —mo + 1)V
P1—0 2¢1
L' Hospital 1. lln(n — 1o+ 1) (In(n — 10 + 1) (n — 10 + 1)V 191 + (n — mo + 1)¥1)
P1—0 2

In(n —no +1)2\ ..
:( (n=m+1) ) lim |In(n—no+1)(n—mno+ 1) ¥ +(n—n+ 1"
—_——— N N——— ——

2 P1—0
—1 —0 —1
~In(p—m +1)°
2
All in all we get:
) ln(n—7270+1)2 if n >no and ¢, =0
a_%hno (N, =) = ln(n—no+1)(77—710+11):%17/’1—(71—770+1)w1+1 if n>ny and ;1 #0
0 otherwise (i.e. if n < 1)

hpsilDERIVi<-function(psil, eta, etald = 0)
{h <- eta
temp <- eta
if (any(psil > -le-14 && psil < le-14)){
h[eta >= eta0] <- ((log(etaleta >= etal] - etald + 1))~2)/2
}
else {
temp[eta >= etal0] <- (1 - etald + etaleta >= etal]) psil
hleta >= etal0] <- ((templeta >= etal] *
log(etaleta >= etal0] - etal + 1) * psil)
- (templ[eta >= etal] - 1)) /(psil~2)
}
hleta < etal] <- 0
h
}
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Limit limﬂ—>00 hno (777 Y= 7/}1) (fOI‘ U1 ﬁxed)

Now we want to consider the limit lim,_, (7,9 = 1) for fixed values of ¢4. In the
right tail modification the limit lim,_, ., is of no interest since h,,(n,% = ) is the
identity for n < nj.
no+1In(n—mno+1) ifn>noand ¢ =0
lim fog, (1,9 = 1) = lim Qoo+ P=0EUEEL iy > gy and ¢y # 0
00 n—00

n—

n otherwise (i.e. if n < o)
nlgn (no+1In(n—mo+1)) if¢py =0 no + li_}rn In(n —no+ 1) if i =0
_ © n—00
- . — b1 . - . .
Jim (0 + =mE2) iy £ 0 Mo = g+ gy m (g — o+ 1) i 4y £ 0
= if ¢ >0
T 2T
M0 — r if 1 <0
right tail limits
8 \)alues of Y,
- 05
0
-0.5
——- -1
69 -3
4 —
-3
2 e e e e e ]

Figure A.1: Limit: lim,_, hy, (0,9 = 11) for different values of ¢; and 7y = 0. The grey
dotted horizontal lines indicate the behavior as 7 — oo in case of a finite limit.
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A.2.2 Left tail modification

Recall that we defined the left tail modification in Definition In the following we
want to derive certain functions corresponding to h,, (1,9 = 1)2). We also present their
implementation in R.

U if n>mno
o (1, = 1b2) = no_ln(_ﬁ+go+1) if n<mnyand Py =0
No — Wﬁ# otherwise (i.e. if n < ng and 1y # 0)

hpsi2 <- function (psi2 = stop("Argument 'psi2' is missing"),
eta = stop("Argument 'eta' is missing"), etal = 0)
{h <- 1:length(eta)
hleta >= etal0] <- etaleta >= etal]
if (any(psi2 > -le-14 && psi2 < le-14)) {
hleta < etal] <- etal - log(-(etaleta < etal]) + etal + 1)

}
else {
hleta < eta0] <- -((- etaleta < etal] + etal + 1)~psi2 - 1)/psi2
h[eta < etal0] <- h[eta < etal] + etal
}
h
}

Domain of h,,(n, ¥ = 1»)
For given 9 = 1, € R the domain of h,,(n, 9 = 1)2) can be expressed as a function of 7:

Linex) i 1) > 1o
domain(hy,(n, ¥ = v2)) = Lyewy = § Ln<npo+1} ifn <moand =0
many cases otherwise (i.e. if n < ny and ¥y # 0)

take easier implementation
m (A.4)

is.finite is an R intern function ~11%-Tinite(hng(nwp=i2))}
Since:
for the first case: n > 7,

nekR

for the second case: 1 < 1y and 1, =0

!
—n+n+1>0 domain of In(-)
Sn<n+1
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for the third case: n < ng and ¥y # 0
This case requires a lot of analysis of different cases. The domain of the function for the
third cases is defined by the domain of —%

value we differentiate the following cases:

for a specific value of 1. For this

e 1), = 1: the domain is the real line

e )y = —1: the domain are the values for which —n+ 17y +1#0, i.e. R\ {ng+ 1}

® Yy FLNYy # —1

— Py >0
% 19 is not integer: the domain are the values for which —n+mny+1 is positive
(Example: ¢y = 0.5, 1 is arbitrary = we have ——V_"Jror_]gJ“H)
% 1)y is an integer:
- 19 odd: the domain is the real line (Example: ¢y = 3, 1o is arbitrary
- 1)3-1
= we have — 10 t)7—1 timl o1
- 19 even: the domain is the real line (Example: 1y = 2, 19 is arbitrary

= we have _—(—n+7102+1)2—1)
— Py <0
% 19 is not integer: the domain are the values for which —n+mny+1 is positive
S S—
(Example: 1y = —0.5, 1 is arbitrary = we have Y000 )

* 1) 1s an integer:
- 15 odd: the domain are the values for which —n +ng + 1 # 0, i.e.
1

—L a1

R\{no+1} (Example: 1)y = —3, np is arbitrary = we have %)

- by even: the domain are the values for which —n +ny + 1 # 0, ie.
1

—t 1
R\ {no+1} (Example: ¢ = —2, ng is arbitrary = we have =20 )

Inverse of h, (1,19 = 1;) w.r.t. n

We get:
0= (hno(n, % = 1)) (y)
Yy if 7 > no
= no+1—exp{n—y} 1 if n <mnyand Py =0 (A.5)
no+1— (Ya(no —y) +1)%2 otherwise (i.e. if n < g and 1y # 0)
Since:

for the first case: n > ng



106 A APPENDIX

for the second case: n < ng and 1, =0
y=mno—In(=n+mno+1)
o —y=In(=n+mn+1)
< exp{m —y} = —n+mn+1
e n=mn+1—exp{m—y}
for the third case: n < ny and 1y # 0

(—n+m+1)¥ —1
Yy =" —
()

(=n+m+ 1" —1
L)
& (o —y)be = (—n+m+ 1) —1

1
S (o —y)a+1)%2 = —n+no+1
1
Sn=nmn+1-(n—y)+1)"

<N — Y=

hpsi2INV<-function(psi2, y, eta0 = 0)
{h <- 1:length(y)
hly >= etal] <- yly >= etal]
if (any(psi2 > -le-14 && psi2 < le-14)){
hly < eta0] <- eta0 + 1 - exp(etald - yly < etal])
}
else {
hly < eta0] <- eta0d + 1 - ((1 - (psi2 * (y[y < etal0] - eta0)))~(1/psi2))
}
h
}

Derivative of h, (1, % = 12) w.r.t. n

Now we want to calculate:

5 % (n) if 1 > o

3_77}%70(777 P =) = Zn (0 — l?_(;zoi’l;ﬁj‘l 1) ifn< 7?0 CW.Ld 1/1.2 =0
o <770 — T) otherwise (i.e. if n < 7y and ¢, # 0)
1 if n > no

m(—l) if n < ny and 1y =0
—(=n+ o+ 1)®2=D(=1) otherwise (i.e. if n < 1y and 5 # 0)
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1 if n>mno
— m if n <mnyand Py =0
(= +no +1)¥2=Y otherwise (i.e. if n < 1y and 1, # 0)

(A.6)

hpsi2DERIV<-function(psi2, eta, etal = 0)

{h <- 1:length(eta)

h[eta >= etal] <- 1

if (any(psi2 > -le-14 && psi2 < le-14)){
h[eta < etal] <- 1/(etal0 + 1 - etaleta < etal])
}

else{

hleta < eta0] <- (eta0 + 1 - etaleta < etal])~(psi2 - 1)
}

h

}

Derivative of h, (1,9 = 1) w.r.t. 1
Now we want to calculate:

0

a_%hno(% ) = 1)
(55 (1) if 1 > g
—{ 35, (o —W(=n+no+1)) if n<noand o =0
L 3%2 (770 - Wp%) otherwise (i.e. if n < ny and 1y # 0)
(0 if n > no
_ ] Jim g (o - ) if 5 < o and 1 = 0
| - (ln(—n+no+1)(—n+no+l)g)1/12—((—n+no+1)w2—1) otherwise (i.e. if n < ny and 1y # 0)
K if n > no
i g (- st if 7 < o and 15 = 0
\ (*77+770+1)¢2—171n(*zér770+1)(*77+T]0+1)¢’2¢2 otherwise (i.e. if 7 < 10 and 1y # 0)
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Remark A.11 ( .
SN ol —ntno+1)"2—1 .
The limit 1};I—I>10 50s (770 — Ow—z> can be calculated by:
im -2 ( (et - 1)
P2 —0 Oy o 1y
~ lim @W+WW+UW—1—m@ﬂ+mﬁﬁx—ﬁ+%+1WWﬂ
$h2—0 770%
Uttospitat 1 [W(=n+ 9+ 1)(=n + o + 1)
B P2—0 2¢2
~ (In(=n+nm0+1*(=n+m + 1)y + In(—n + 1m0 + (=1 +no + 1)*2)
2ty
gy |+ DA (= mo + 1)
h2—0 PALD
L Hospital 1. S In(=n 4o+ D (In(=n+n0 + 1) (=0 +n0 + 1)"¢2 + (=1 + 1m0 +1)*?)
o P2—0 2
In(—n +m +1)*\ .
= — _ _ 1 1112 _ 1 1,[12
( 5 Jm A (=0t +1) (0t + D™ Yo + (0t mt DT
—1 —0 —1
_ In(=n+m+1)
2
All in all we get:
0
Z —
a¢2 T]O(nadj ¢2)
0 if n >mno
In(—n+no+1)°

={ ———ThT it n <nyand Yy =0

2
_ ¥2_1—In(— _ v C
(—n+m0-+1)%¥2 —1—In( ZEUOH)( ntntD)2%2 G4 erwise (i.e. if n <o and 1y # 0)

hpsi2DERIV2<-function(psi2, eta, etald = 0)
{h <- eta
temp <- eta
hleta >= etal] <- 0
if (any(psi2 > -le-14 && psi2 < le-14)){
hleta < eta0] <- - ((log(l + etal0 - etaleta < eta0l))~2)/2
}
else {
temp[eta < etal0] <- (1 + etal - etaleta < etal]) psi2
hleta < etal0] <- - ((templeta < etal] *
log( - etaleta < eta0] + etald + 1) * psi2)
- (templeta < etal] - 1))/(psi2~2)

'
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Limit lim, o by, (7,9 = v2) (for vy fixed)

Now we want to consider the limit lim, , . hy,(n, % = 12) for fixed values of 1),. In the
left tail modification the limit lim,_, is of no interest since h,, (1, ¥ = 11) is the identity
for n > np.

n if n>mno

m hy(n, ¥ =) = lim <no—In(—n+mn+1) ifn<nand =0
n——00 n——00 _ (—n+no+1)¥2—1

Mo ™ otherwise i.e. 7 < ny and 2 # 0
ngl—noo (770 N ln(_n T o - 1)) w2 =0 Mo — nli)r_lloo 1“(—77 + o + 1) ¢2 =0
= . _ w _ — )
nEEnOO (770 _( 77+7701;;1) 2 1) 77[]2 7& 0 Mo + i — ing@m (—n + o + 1)¢2 1/)2 7& 0
—00 if 1o =0
= - if 9 >0
TS S
Mo + 2 if 2/12 <0
left tail limits

R R
[ T
e
_4 —
6 values of ),
------ -3
-—- -1
--- =05
,/,' 5800000 O
-8 ---- 05
T T T T T 1
-25 =20 -15 -10 -5 0

Figure A.2: Limit: lim h,(n, ¢ = 1),) for different values of ¢, and 7y = 0. The grey
n——00

dotted horizontal lines indicate the behavior as 7 — —oo in case of a finite limit.
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A.2.3 Both tail modification

Recall that we defined the both tail modification in Definition In the following we
want to derive certain functions corresponding to Ay, (1, % = (¢1,12)). We also present
their implementation in R.

m+Inn—n+1) ifn>n andy =0
mo + UL i > g and 4y # 0
mo—In(=n+mn+1) ifn<noand =0

No — wﬁ% otherwise (i.e. if n < ng and 19 # 0)

hno (0, % = (1, 1h2)) =

hpsil2 <- function (psil = stop("Argument 'psil' is missing"),
psi2 = stop("Argument 'psi2' is missing"),
eta = stop("Argument 'eta' is missing"), etaO = 0)
{h <- 1:length(eta)
if (any(psil > -le-14 && psil < le-14)) {
hleta >= eta0] <- eta0 + log(etaleta >= etal] - etald + 1)
}
else {
hleta >= etald] <- ((etaleta >= etal] - etal + 1)~psil - 1)/psil
hleta >= eta0] <- h[eta >= etal] + etal
}
if (any(psi2 > -le-14 && psi2 < le-14)) A
hleta < eta0] <- etal - log(-(etaleta < eta0]) + etal + 1)
}
else {
hleta < eta0] <- -((- etaleta < etal0] + etald + 1)~psi2 - 1)/psi2
hleta < eta0] <- h[eta < etal] + etal

-

Domain of h,,(n, ¥ = (¢1,12))

For given 9 = (¢1,19) € R? the domain of h,,(n,% = (¢1,12)) can be expressed as a
function of 7:

Lypsno—1} if n > no and ¢ =0
many cases if n > ny and Y # 0
Lin<not1y if n <mno and ¢, =0
many cases otherwise (i.e. if n < ny and 1y # 0)

domain(hy,(n, ¥ = (Y1,12))) =

take easier implementation
) {is finite(hyy (nh=(v1,42))) } (A7)
is.finite is an R intern function ' no \",Y=(¥1,92

Remark A.12
The analysis of the different cases is the same as for the single tail modifications.
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Inverse of f,(n, % = (v1, 1)) Wor.t. 7

We get:
0= (P (0, = (¢p1,42))) " (y)
exp{y —no} + 7701— 1 if n >mng and ¥, =0
_ ) ((y=mo)r +1)% +mo—1 ifn>no and ¢y # 0 (A.8)
no+ 1 —exp{no — y} 1 if n <np and 1 =0 ‘
no+1— (14 (no—y)a)?2 otherwise (i.e. if n < ny and 19 # 0)
Since:

for the first case: 7 > ny and ¢¥; =0

y=mno+In(n—m+1)
Sy—n=nn-—mn+1)
sSexp{y—mt=n—m+1
S n=exp{y — o} +m —1

for the second case: n > 1y and 91 # 0

(n—mo+1)" —1
(0
(n—mo+ 1" —1

(0

S (y—m)r =n—n+1)" =1
S y—m)r+1=n—n+1)"
@((y—ﬁo)¢1+1)ﬁ:77—770+1
=y —m)r+1)% +10—1

Yy =rno+

<Y —"No=

for the third case: n < 1y and ¥y =0
y =10 —In(=n+n+1)
S —y=In(=n+mn+1)
& exp{m —y}=-n+n+1
& n=rm+1—exp{n —y}
for the fourth case: n < 1y and ¥y # 0

(=n+m+1)* —1
Yy="To—
(e

(=n+m+1)" -1
)
S (o — Yo = (—n+n+1)" -1

<N — Y=
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& (o —ybe+1=(—n+mn +1)"
1
S (o —yhe+1)72 =—n+mn+1
1
Sn=n+1—=((no—y)s+1)?2

hpsil2INV<-function(psil, psi2, y, eta0 = 0)

{h

<- 1:length(y)

if (any(psil > -le-14 && psil < le-14)){
hly >= etal] <- etald - 1 + exp(yly >= etal0] - etal)

+

else {
hly >= etal] <- etald - 1 +
((1 + (psil * (yly >= etal0] - eta0)))~(1/psil))

+

if (any(psi2 > -le-14 && psi2 < le-14)){
hly < eta0] <- eta0 + 1 - exp(eta0 - yly < eta0l)

}

else {
hly < eta0] <- eta0 + 1 -

b
h

}

Derivative of h,, (1,9 =

Now we want to calculate:

0

on

((1 - (psi2 * (yly <

hno(nu¢ = (¢17¢2)) =

\

eta0] - eta0)))~(1/psi2))

(Y1, %2)) w.r.t. 7

oo (o +1n(n—nog+1)) if n>1no and ¢, =0

a% (770 + —(n—mzmq) if n > no and ¢, # 0

e (o — I (=n+no + 1)) if n <y and ¢ =0

a% (770 — (_"M%# otherwise (i.e. if n < ny and ¢, # 0)
7]—7710+1 1 if n>mnyand ¢ =0

(= + 1) if 7 > 1o and ¢y # 0
—m(—l) 1f7]<770 and "Lpgzo

—(=n+mn+ D)2 (=1) otherwise (i.e. if 7 <1y and 1y # 0)
Wlo-i-l 1f772770andw1:0

(n—no+ D)™™ it g > e and ¢y #0

m if n <mnoand 1 =0

(—n+mno + 1)(@_1) otherwise (i.e. if n < ng and 1y # 0)
(A.9)
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hpsi12DERIV<-function(psil, psi2, eta, etald = 0)

{h <- 1:length(eta)

if (any(psil > -le-14 && psil < le-14)){

hleta >= etal0] <- 1/(etaleta >= etal]- etald + 1)

}

else {

h[eta >= etal0] <- (1 - eta0 + etaleta >= etal])~(psil - 1)
}

if (any(psi2 > -le-14 && psi2 < le-14)){

hleta < eta0] <- 1/(eta0d + 1 - etaleta < eta0l])

}

elseq

hleta < eta0] <- (1 + eta0 - etaleta < etal])~(psi2 - 1)
}

h

}

Derivative of h, (n,% = (¥1,12)) w.r.t. ¢,

Now we want to calculate (compare to the calculation for the right tail modification):

0
a_%hno (77, ¢ = (1/}17 ¢2))

(2 o+ —ne+1) ifn > and g =0
_ w1 .
) %(770"'(77 HOE) 1 1) if n >mng and ¥ # 0
52 (g —In (= + 19 + 1)) if 7 < 7 and ¢ = 0
_ Yo . . .
\ 8%1 (770 _ Endmoth)*2 -1 77+’707;;1) 2 1) otherwise (i.e. if < 1o and 1, # 0)
(1 O (n=mo+1)¥1-1 : —
A 5, (0 + =) in 2 o and ¢ =0
_ In(n—no+1)(n—no+1)¥1¢1—((n—mo+1)¥1-1) if n >mng and ¥ #0
= Ui -
0 ifn<n0and@/)2=()
L0 otherwise (i.e. if n < g and 9 # 0)
n(n— 2 :
( In(n go-f—l) ) ) ifn>mnyand Y =0
n(n— — 1ehy —(n— .
_ In(n—mno+1)(n no+11)p% Y1-(—mo+1)"+1  .p 1N > 1o and ¥ # 0
0 if77<770and@/)220
L 0 otherwise (i.e. if < 9 and v, # 0)
Remark A.13

Here we calculated the corresponding limit as in Remark |[A.10l Hence, we have:

lim i

P1—0 Oy

<n0+ (n—mo+1)¥r — 1> ~ In(np—mno+ 1)
() 2
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hpsil12DERIVi<-function(psil, psi2, eta, etal = 0)
{h <- eta
temp <- eta
if (any(psil > -le-14 && psil < le-14)){
hleta >= etal0] <- ((log(etaleta >= etal] - etald + 1))~2)/2
}
else {
temp[eta >= etal] <- (1 - eta0 + etaleta >= etal]) psil
hleta >= etal0] <- ((templeta >= etal] *
log(etaleta >= eta0] - etal + 1)
* psil) - (templ[eta >= etal] - 1))/(psil~2)
}
if (any(psi2 > -le-14 && psi2 < le-14)){
hleta < etal] <- 0
}
else {
hleta < etal] <- 0
}
h
}

Derivative of h,, (0,1 = (¢1,12)) w.r.t. 1y

Now we want to calculate (compare to the calculation for the left tail modification):

0
“n —
81/}2 770(777 'lb <¢17 ¢2)>
(o (o +In(n—m+1)) ifn>mnand =0
_ Y1 .
) %(UOWLW#) if n > no and ¥, #0
95 (o = (=n+mo + 1)) if n <o and ¥, =0
. Yo _ . . .
\ 6%2 (770 — W*”‘ip%) otherwise (i.e. if n < o and ¢, # 0)
(0 it n>mnpand ¢, =0
0 ifnZanHd@Ul?éO
_ im 2 (p, — Crm+Da-1 i =
1}211—{10 Oth2 (770 sz > iy <o and i =0
n(— _ » _((— P _
\ In(=nn0+1)( 77+770+1)¢221/12 ((=m+no+1)¥2-1) otherwise (i.e. if n < ny and 1y # 0)
2
(0 if n>mnyand ¥y =0
0 if n > no and ¢, # 0
= _ln(—77+2770+1)2 if n <mnpand ¢, =0
\ (—77+770+1)w2—1—111(—3)‘2”70"‘1)(_77+’70+1)w2¢2 otherwise (i.e. if n < g and ¢, # 0)
2
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Remark A.14
Here we calculated the corresponding limit as in Remark |A.11l Hence, we have:

lim —

(e D=1\ In(=n 4o+ 1)?
h2—0 (977/12 o

(G5 2

hpsi12DERIV2<-function(psil, psi2, eta, eta0l)
{h <- eta
temp <- eta
if (any(psil > -le-14 && psil < le-14)){
hleta >= etal] <- 0
}
else {
hleta >= etal] <- 0
}
if (any(psi2 > -le-14 && psi2 < le-14)){
hleta < etal0] <- - ((log(l + etal - etaleta < etal]))~2)/2
}

else {
temp[eta < etal] <- (1 + etal0 - etaleta < etal]) psi2
hleta < etal0] <- - ((templeta < etal] *
log( - etaleta < etal] + etal + 1)
* psi2) - (templ[eta < etalO] - 1))/(psi2~2)
}
h
}

Remark A.15 (Limits lim,;| o0 o (0, ¥ = (1, 2)) (for 9 fixed))

115

In the sections before we studied lim, oo by (7, % = 1) and lim,,_ hyy (7, 9P = 1)9) (see
Subsection and Subsection |A.2.2)). For the both tail modification we can adopt the

same results as derived for the single tail modifications in the corresponding cases.

Remark A.16 (Implementation of the domain)

In the implementation of the domain of the general h(-) - power transformations we used
the R function is.finite. Also some of the common link functions in R use this function
to describe the domain in the specification of valideta (see make.link("inverse") and

make.link("sqrt")).
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A.3 Calculation of the deviance in R

Consider again the Gaussian regression model as in Subsection In Example we
saw the output of an ordinary Gaussian regression and in Example the output of
a right tail modified Gaussian regression was presented. In both examples the data set
pcb.ex was used (see Example . In the following we will use the common formula to

calculate the (unscaled) deviance in the case of a normal distribution (see McCullagh and|

(1983)(p. 25))

D(f,y) =Y (v — i)

=1

Example A.17 (Verification for the ordinary Gaussian regression)
For the ordinary Gaussian regression the value of the deviance was:

ordi_gauss_reg <- glm(formula = log.pcb~age.cen,
family = gaussian(link="identity"),

data = pcb.ex)
summary (ordi_gauss_reg) $deviance

## [1] 8.359

If we verify this value by the formula given in Equation (A.10) we get:

beta <- summary(ordi_gauss_reg)$coefficients[,1]

g_inv <- make.link("identity")$linkinv

X_design <- model.matrix(object=log.pcb~age.cen, data=pcb.ex)
eta <- X_design¥x*%beta

mu_hat <- g_inv(eta)

response <- log.pcb

auxiliary_calc <- (response-mu_hat)"2

Deviance_PCB_ord <- sum(auxiliary_calc)

Deviance_PCB_ord

## [1] 8.359
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Example A.18 (Verification for the right tail modified Gaussian regression)
For the right tail modified Gaussian regression the value of the deviance was:

tamo_gauss_reg <- glm(formula = log.pcb~age.cen,
family = gaussian(link=psilGAUSS(psil=0.2,eta0=0)),
data = pcb.ex)

summary (tamo_gauss_reg) $deviance

## [1]1 6.327

If we verify this value by the formula given in Equation (A.10) we get:

beta <- summary(tamo_gauss_reg)$coefficients[,1]

g_inv <- psilGAUSS(psil=0.2,eta0=0)$linkinv

X_design <- model.matrix(object=log.pcb~age.cen, data=pcb.ex)
eta <- X_designi*Jbeta

mu_hat <- g_inv(eta)

response <- log.pcb

auxiliary_calc <- (response-mu_hat)"~2

Deviance_PCB_tm <- sum(auxiliary_calc)

Deviance_PCB_tm

## [1] 6.327

A.4 Calculations for the logistic regression model

Example|A.[19 (Scaled quantities for the logistic regression model)
In Section we derived unscaled quantities like Definition [3.15|or Definition 3.16, In the
case of a ScaledBinom(n,p) distribution we have a(¢;) = --. Le. the dispersion function
depends on the observations (for i € {1,...,n}) and hence we won’t succeed in finding
unscaled quantities. Thus, we follow |Czado et al.| (2013)(Sections 4.3 and 4.4) to define
scaled versions of these definitions for the logistic regression model.

Definition A.20 (Log-likelihood for the logistic regression)
Like in Equation (3.10]) we calculate the log likelihood, using the quantities we derived in
Subsection [A.T.2

180 k%)= 3 (P ik o))

=1
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e G20 5 <n (i@ B~ (1+exp{z/B})] +1n ((nz)»

=1

_ zzn;m [kiz! B —1In (1 + exp{z; B})] + Zilln ((nZ:*))

7

-~
:= const. C indep. of 3

= i” [kiz! B —In(1+exp{z/B})] +C (A.11)
=1

Remark A.21 (Auxiliary|calculation)
The quantities in Definition [A.20| can be calculated by:

see Sec. 1 see Sec. [AT2 i
a(9) Seidd 0; = n (2 ;
1 —m.
TLZ pi
s see De:f. 339 exp{azjﬂ} .
! 1+ exp{z B}’
exp{a:?_[rﬂ} eXP{a%TE}
14exp{z, B} . 1+exp{z, B} _ T .
=0;,=1n T ewlem | In 1| In (exp{z; B}) =z B

=b(0;) = In (1 + exp{z; B})

Definition A.22 (Scaled score equations for logistic regression)
For j € {1,...,p} we define

(B | k") see g mz { e exp{z] 3} }
0B; Miij | i 1 + exp{z, B}

exp{z] B}

1+exp{me Ty - nixi; |k — Y
Z ;| Z j

l

pi=

Remark A.23| (Partial derivative w.r.t. (3;)
Definition [A.22|is the partial derivative of [(3 | k*) w.r.t 3;, since:

OUB | k*) see e &) 0 (N~ e T3 wpla
a5, - o5 (;n i ln(Hep{wZﬂ})D

=3, (el 8) — 5 (1 enlel 9)
=1 <

—y ikt S S
=i, 1+exp{mTﬁ} xp{m B}xij

n T
- Z”zxw {kf . L
=1

1+ exp{z/ 3}
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Remark A.24 (Calculation of elements of the Hessian matrix)
The (i,j) - th element of the scaled Hessian matrix is given by:

82l(ﬁ | k*) see Def. 0 - * eXp{CU;—/B}
opos; O (Z; et [k T+ exp{al ﬁ}D

B n 0 . exp{e’BZTﬁ}
2 (o [ - T eatoren )

Now the partial derivative -2 [ exp{z] B}

3B; | T+exp{x] B}
9 { exp{z] B} 1
0B; |1+ exp{z]B}
_ exp{z] B}r.i(1 + exp{z] B}) — (exp{z] B})*x.
(1+exp{z]B})
eXP{szIB}xzi
(1+ exp{x!B})*

} is given by:

Therefore, we get:

LS
0B:00;
- n o . eXp{CBZTIB}
B ; <nzx2j3_6i [k 1+ exp{w?ﬂ}D

=3 (e [ (P22
=3 (e [ A )

R  exp{z!B}
N Z P Y exp{2 B))

colmT
T Py p{zzf} 7 =P (1-pz) n
(1+exp(=] B})
= - E nzpz(l _pz)xziajzj
z=1

With d; := n;p;(1 — p;) we can define
dy

e 0

D(B) := diag(dy, . ..,d,) = e R (A.12)
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Using this notation we can express the scaled Hessian matriz through, where X T is given
as in Remark and x; defined as in Equation (3.6)):

PP | K
() = v = (o ) —XTD(B)X (A.13)
Bi BJ’ i,5€{1,....p}
Let us denote by p the vector (..., )" ~SealedBinom (p1,-..,pn)" and V(B) =
81('2‘5’“*) — (81(55‘?*), . .,%ﬁlf*)). Consequently, we can rewrite Definition |A.22| in the
following way:

ni

o0

=D,

Example A.25 (Ordinary logistic regression model)
Recall that we had for the logistic regression model:

s =t (P2 ) (2 ) —alp =) =n (A

Therefore, we get:
o 8_%‘9(“") = o (1 — u@-)
L) (e () Lo 1
R (1 — p)? T (1= w)?
_ 1 pi=p; see Def. 1
B pi(1 — pa;) n pi(l —p;)

(A.15)

For the adjusted dependent variable Zfa we get:

27 =mi+ (Y, —Mi)( 77)

O
see . (A. 1

G T R s

Def. B33 and Eq. pi(1 = p;)
Y — nip;

nipi(1 — p;)
Also Collett| (1999) (p. 342ff., see in particular p. 346) describes this results for the logistic
regression model.

Remark A.26
According to the remark in Remark [3.25 Zz-ﬂ is the new response (and not Y; or Y
respectively) and the maximum likelihood estimates are calculated iteratively as weighted

least squares estimates of the new response (see Definition |3.26]).

(A.16)
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In matrix-vector notation Equation (A.16]) equals:
1

p1(1—p1) ) O P
. p2(1—p2) P2
ZP = X3+ Y*—|
O 1 Pn-1
Pn—1(1=pn-1) L Pn )
pn(lfpn)
1 Yi
p1(1—p1) [ ’ |
. O nz D1
Def p2(1—p2) 2 bz
0 I et Pr—1
Pn—1(1=pn-1) ) I 71;_7: Pn /) |
pn(lfpn) "
1
p1(1—p1)
1 O
p2(1—p2)
— X+
() I
pnfl(l*pnfl)
1
pn(l_pn)
L _ —
ni }/1 nip1
nig O Y, NaP2
O 1 Y, 1 Np—1Pn—1
Np—1 1 Yn NnPn
1 '
nip1(1—p1) 1 O [ nip1
nap2(1—p2) n2p2
= XB+ Y- :
O 1 Nn—1Pn—1
nn—lpnfl(lfpﬂfl) 1 i NnPn
R nnpn(l_pn) v
-~ =€
F BB 1)
- XB+D7(B)e A0
——
5:€adj

Remark A.27 (Unscaled and centered around mean)
Notice that e (in Equation (A.17))) represents the unscaled and mean centered responses.

Remark A.28 (Derivation of the weights)
We brought the response Z” in the form of Definition [3.26| (with error term €,4;). Hence,
we need to determine the expectation and the variance-covariance matrix W to know
what the proper weights are. We obtain:
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nip1 nip1r — Nip1 0
n2p2 v N2P2 — N2P2 0
]E [E] — E Y o _ l,l, i N g(nupz) . _ _ 0 c Rn
Np—-1Pn—1 Np—1Pn—1 — NMn—1Pn-1 0
NnPn i NnPn — NnPn O

W = (Co_v[ei,gj]).,.

Ele]=0

..........

= (E [YZYJ — n;p; Yy — nipiY + nipinjpj])@je{l n}

.....

= | EYiY;] —nyp; E[Y] —nipi E[Y]] +nipinp;
—— ———

=nipi =n;p;

-~

T MPiniPy ije{l,...n}

77777

) EYE[Y;] — nipingp; if i # j, since Y; and Y; are indep.
BN - (nip)? ifi—j
0 if 7 # j, since Y; and Y; are indep.
- Var[y;] + E[V] — (maps)?  ifi =]
—— ——

Rem AR pi1—py) e )2
_J0 if 7 # j, since Y; and Y; are indep.
a nipi(1 —pi) ifi=j

n1p1(1 - Pl)

n2p2(1 _]92> O

=W =
O nn—lpn—l(l - pn—l)
Eq. (A12)
"= D(B)
Remark A.29
The components on the diagonal of W are the variances of Y; for i € {1,...,n}.

Remark A.30 (Variance-covariance matrix of €,45)
With the calculation above we can derive the variance-covariance matrix of €,4; by:

Wag = Covleay] = Cov[D~Y(B)e] = D~Y(8) Covle] (D71(B))
=D(B)
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We used Cov[Az] = ACov[z]AT for A € R™™ and z € R" (see Seber (1977)(p. 11)).

Remark A.31 (Iterative values of MLE B)
Given we have calculated the value 3%, then, by Remark [3.25, we get the value 3°t1! in
the (s+1)-th iteration by (using above’s formulas):

,BS+1 — (XTWle)—lXTWflzﬁs

adj adj

= (XTD(B*)X)"' X" D(8) 2"
Therefore, the final maximum likelihood estimates B fulfill:

B=(X"D(B)X)"'X"D(B)Z"

Example A.32 (Tail modified logistic regression model)
Recall that we had for the tail modified logistic regression (see Remark [6.15)):

o) = ()™ (1 (2 ) ) =

L —p

Therefore, we get:

o == o™ (0 (£25))

) o
(%hno) [(hno(nia’%[’))il (hl (1‘1—;1))} Ot (ln <v1 — 1)) (A.18)
see Bq. (K1)
N pi(1—p;)

We also have that (see Table [3.2):

o6 = (1+ exlp{ﬁi})Q = V)1 ~F) =pll - )

For the adjusted dependent variable Ziﬁ we get:

on;
I8 = +(Y* — 1 :
[ 772+( 7 :u’l) (a’u2>

1 1
8%ihno) [(hno(m,?#))*l (hl (J_L—Ll))} pi<1 _pi>

Def. T *
= x; B+ (Y —pi)
Def. B35 Eq. (A18) (
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The weights are given by (see Definition [3.27):

- -1

—v'(0;) 2

B_ |75 1—o
W=t p) () [ B )) ™" (1n (722) ) | P2 =)

1 1
PP () [0 (0 (252))])')

=pi(1—pi) ((3%’%) {(hﬂo(m’w)_l <ln (1 ﬁM)) )2

Remark A.33 (Partial derivatives w.r.t. n})

The derivatives a%hno are calculated in Section [A.2]
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A.5 Abbreviations and Notation

A.5.1

Abbreviations

The abbreviations in the following table are commonly used:

Symbol | Abbreviation Explanation
f pmf probability mass function
(for discrete distributions)
f pdf probability distribution function
(for continuous distributions)
F cdf cumulative distribution function
GLM generalized linear model
GLMs generalized linear models
MLE maximum likelihood estimator or estimate
IWLS Iterative weighted least squares
i.4.d. independent and identically distributed
w.r.t. with respect to
w.l.o.g. without loss of generality
Res. or res. restriction
s.1. such that or so that

A.5.2 Notation

Throughout the thesis we used the following notation:

Symbol | Explanation Represents
A capital letter a matrix, i.e. A € R™*" (m,n € N)
Y (majuscule) depending on the context Y can also describe
a random variable
X small letter a real value, i.e. x € R
y (minuscule ) depending on the context y can also describe
a realization of a random variable, i.e. Y =y
means that the random variable Y takes the
value y in this specific case
x small letter a vector of real numbers,
in bold print ie. ¢ = (v1,29,...,Tp_1,2,) € R"
Y capital letter a vector of random variables,
in bold print ie. Y = (V1,Y,,...,Y,1,Y,) € R”
B hat over letter in | depending on the context 8 can represent a
bold print random vector (referred to as estimator) or
a specific outcome of the estimator regarding
certain data (referred to as estimates)

125
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